The medium for propagation of sound refers to the substance through which sound waves can travel. Sound waves can propagate through various mediums, including gases, liquids, and solids.Sound waves require a medium to travel through, as they are a type of mechanical wave.
The medium through which sound waves travel can have an impact on the speed, direction, and intensity of the sound waves.
Gases: In gases, sound waves can travel through the movement of molecules. These molecules collide with each other, transferring kinetic energy and producing pressure waves that can be detected as sound.
Liquids: In liquids, sound waves can travel through the vibration of molecules. Liquids are more dense than gases, meaning that sound waves can travel faster through liquids. The vibration of molecules transfers energy, producing waves that can be detected as sound.
Solids: In solids, sound waves can travel through the movement of particles. Solids are the most dense medium for sound waves, allowing them to travel even faster than in liquids.
When sound waves move through a solid, the particles move back and forth in the direction of the wave, transmitting energy that produces sound waves.
Learn more about sound waves here ;
https://brainly.com/question/1554319
#SPJ11
A machine is used to form bubbles from pure water by
mechanically foaming it. The surface tension of water is 0:070 N
m-1. What is the gauge pressure inside bubbles of radius 10 m?
The gauge pressure inside the bubble is 14,000 N/m² or 14,000 Pa. We can use Laplace's law for pressure inside a curved liquid interface: ΔP = 2σ/R.
To find the gauge pressure inside bubbles, we can use the Laplace's law for pressure inside a curved liquid interface:
ΔP = 2σ/R
where ΔP is the pressure difference across the curved interface, σ is the surface tension of water, and R is the radius of the bubble.
Given:
Surface tension of water (σ) = 0.070 N/m
Radius of the bubble (R) = 10 μm = 10 × 10^(-6) m
Substituting the values into the equation, we have:
ΔP = 2σ/R
= 2 * 0.070 / (10 × 10^(-6))
= 14,000 N/m²
The gauge pressure is the difference between the absolute pressure inside the bubble and the atmospheric pressure. Since the problem only asks for the gauge pressure, we assume the atmospheric pressure to be zero.
Therefore, the gauge pressure inside the bubble is 14,000 N/m² or 14,000 Pa.
To learn more about gauge pressure click here
https://brainly.com/question/30698101
#SPJ11