Use the continuous compound interest formula to find the indicated value. \( A=\$ 18,642 ; P=\$ 12,400 ; t=60 \) months; \( r=? \)

Answers

Answer 1

Using the continuous compound interest formula, the interest rate \( r \) is approximately 2.72% per month.

The continuous compound interest formula is given by \( A = P e^{rt} \), where \( A \) is the final amount, \( P \) is the principal (initial amount), \( r \) is the interest rate per unit time, and \( t \) is the time in the same units as the interest rate.

Given \( A = \$18,642 \), \( P = \$12,400 \), and \( t = 60 \) months, we can rearrange the formula to solve for \( r \):
\[ r = \frac{1}{t} \ln \left(\frac{A}{P}\right) \]

Substituting the given values, we have:
\[ r = \frac{1}{60} \ln \left(\frac{18642}{12400}\right) \approx 0.0272 \]

Converting the interest rate to a percentage, the approximate interest rate \( r \) is 2.72% per month.

Therefore, using the continuous compound interest formula, the interest rate \( r \) is approximately 2.72% per month.

Learn more about Interest rate click here :brainly.com/question/13084327

#SPJ11


Related Questions

Find class boundaries, midpoint, and width for the class.
128-152
Part: 0/3
Part 1 of 3
The class boundaries for the class are 119.5 142.5
H
X

Answers

For the class interval 128-152, the class boundaries are 127.5 and 152.5, the midpoint is 140, and the width is 25.

To find the class boundaries, midpoint, and width for the given class interval 128-152, we can use the following formulas:

Class boundaries:

Lower class boundary = lower limit - 0.5

Upper class boundary = upper limit + 0.5

Midpoint:

Midpoint = (lower class boundary + upper class boundary) / 2

Width:

Width = upper class boundary - lower class boundary

For the given class interval 128-152:

Lower class boundary = 128 - 0.5 = 127.5

Upper class boundary = 152 + 0.5 = 152.5

Midpoint = (127.5 + 152.5) / 2 = 140

Width = 152.5 - 127.5 = 25

Therefore, for the class interval 128-152, the class boundaries are 127.5 and 152.5, the midpoint is 140, and the width is 25.

It's worth noting that class boundaries are typically used in the construction of frequency distribution tables or histograms, where each class interval represents a range of values.

The lower class boundary is the smallest value that belongs to the class, and the upper class boundary is the largest value that belongs to the class. The midpoint represents the central value within the class, while the width denotes the range of values covered by the class interval.

For more such questions on  class interval visit:

https://brainly.com/question/19473137

#SPJ8

Labour content in the production of an article is \( 16 \frac{2}{3} \% \) of total cost. How much is the labour cost if the total cost is \( \$ 456 ? \) The labour cost is \( \$ \) (Type an integer or

Answers

According to the statement the labour cost is $393 (Type an integer or a decimal rounded to two decimal places.) or simply $393.

Given information:Labour content in the production of an article is 16 2/3% of total cost.

Total cost is $456

To find:The labour costSolution:Labour content in the production of an article is 16 2/3% of total cost.

In other words, if the total cost is $100, then labour cost is $16 2/3.

Let the labour cost be x.

So, the total cost will be = x + 16 2/3% of x

According to the question, total cost is 456456 = x + 16 2/3% of xx + 16 2/3% of x = $456

Convert the percentage to fraction:16 \frac{2}{3} \% = \frac{50}{3} \% = \frac{50}{3 \times 100} = \frac{1}{6}

Therefore,x + \frac{1}{6}x = 456\Rightarrow \frac{7}{6}x = 456\Rightarrow x = \frac{456 \times 6}{7} = 393.14$

So, the labour cost is $393.14 (Type an integer or a decimal rounded to two decimal places.)

The labour cost is $393 (Type an integer or a decimal rounded to two decimal places.) or simply $393.

To know more about integer visit :

https://brainly.com/question/490943

#SPJ11

Choice under Uncertainty Consider the following gamble. You flip a coin. If the coin lands on heads, then you win £80. If the coin lands on tails, then you win nothing. Note - the coin is not a fair coin. The probability of tails is 33%, and the probability of heads is 67%. (a) What is the expected value of this gamble? [5 Marks] (b) What would be the fair (zero profit in expectation) premium on an insurance policy that paid £88 if the bet was lost?

Answers

Heads with a probability of 67% and tails with a probability of 33%.The winnings for heads are £80, and the winnings for tails are £0.

Therefore, the expected value can be calculated as follows:

Expected value = (Probability of heads * Winnings for heads) + (Probability of tails * Winnings for tails)

Expected value = (0.67 * £80) + (0.33 * £0)

Expected value = £53.60

The expected value of this gamble is £53.60.

Now, let's consider the fair premium for an insurance policy. A fair premium is the amount that would result in zero profit for the insurer in expectation. In this case, the insurance policy would pay out £88 if the bet was lost (tails). Since the probability of tails is 33%, the expected payout for the insurer would be:

Expected payout for insurer = Probability of tails * Payout for tails

Expected payout for insurer = 0.33 * £88

Expected payout for insurer = £29.04

To make the insurer have zero profit in expectation, the fair premium should be equal to the expected payout for the insurer. Therefore, the fair premium on the insurance policy would be £29.04.

Learn more about gamble here

brainly.com/question/12020375

#SPJ11

Let f(x)=2x^2+20x+3
a. Find the values of x for which the slope of the curve y=f(x) is 0 .
b. Find the values of x for which the slope of the curve y=f(x) is 4

Answers

The value of x for which the slope of the curve y=f(x) is 0 x= -5.  The values of x for which the slope of the curve y=f(x) is 4 is x= -4.

To find the values of x for which the slope of the curve y = f(x) is 0, we need to find the x-coordinates of the points where the derivative of f(x) with respect to x is equal to 0.

a. Finding x for which the slope is 0:

1. Differentiate f(x) with respect to x:

  f'(x) = 4x + 20

2. Set f'(x) equal to 0 and solve for x:

  4x + 20 = 0

  4x = -20

  x = -5

Therefore, the slope of the curve y = f(x) is 0 at x = -5.

b. Finding x for which the slope is 4:

1. Differentiate f(x) with respect to x:

  f'(x) = 4x + 20

2. Set f'(x) equal to 4 and solve for x:

  4x + 20 = 4

  4x = 4 - 20

  4x = -16

  x = -4

Therefore, the slope of the curve y = f(x) is 4 at x = -4.

Learn more about derivative here:
brainly.com/question/29144258

#SPJ11


please help ! and box answers
(a) What will be the length of the wire? in (b) What will be the diameter of the wire? men

Answers

(a) The length of the wire will be 11 cm
(b) The diameter of the wire will be 3.2 cm

This is found from the formula to find the length of a cylinder
This formula is
L=pi*D²*h
Where L is the length of the cylinder in cm, D is the diameter of the cylinder in cm, and h is the height of the cylinder in cm.

By using the values from the question, the result is 11.024 cm for the length and 3.221cm for the diameter

Is the idempotency identity satisfied, given the algebraic product T-norm (T
ap

) and algebraic sum (S
as

)T-coNorm? Idempotency A∩A=A Algebraic Sum: S
as

(a,b)=a+b−a⋅b A∪A=A Algebraic Product: T
ap

(a,b)=a⋅b

Answers

No, the idempotency identity is not satisfied for the given T-norm and T-coNorm operations.

The idempotency property states that applying an operation to an element twice should yield the same result as applying it once. In other words, if A is an element and "⋆" is an operation, then A ⋆ A = A.

In the case of the T-norm (T_ap) operation, which is the algebraic product, the idempotency property is not satisfied. The T-norm is defined as T_ap(a, b) = a ⋅ b. If we apply the operation to an element twice, we have T_ap(a, a) = a ⋅ a = a^2, which is not equal to a in general. Therefore, the T-norm operation does not satisfy the idempotency property.

Similarly, for the T-coNorm operation, which is the algebraic sum (S_as), the idempotency property is also not satisfied. The T-coNorm is defined as S_as(a, b) = a + b - a ⋅ b. If we apply the operation to an element twice, we have S_as(a, a) = a + a - a ⋅ a = 2a - a^2, which is not equal to a in general. Hence, the T-coNorm operation does not satisfy the idempotency property.

In conclusion, neither the T-norm nor the T-coNorm operations satisfy the idempotency property, as applying these operations twice does not give the same result as applying them once.

To learn more about idempotency property: brainly.com/question/30360680

#SPJ11

Design a function that meets the following criteria:
The function must have both a numerator and denominator.
The function must be designed in such a way that when you find its derivative, you will need to apply the chain rule at some point.
Explain how the function you chose can be rewritten in such a way that the product rule can be applied to determine the derivative.
After rewriting your function, calculate the derivative by applying the appropriate processes. Be sure to explain each step you take and the reason why you are taking it. Do not simplify your work.

Answers

Consider the function f(x) = (x^2 + 1) / (x - 3). To rewrite the function in a way that the product rule can be applied, we can rewrite the numerator as a product of two functions: f(x) = [(x - 3)(x + 3)] / (x - 3).

Now, applying the product rule, we have f'(x) = [(x - 3)(x + 3)]' / (x - 3) + (x - 3)' [(x + 3) / (x - 3)].

Simplifying, we get f'(x) = [(x + 3) + (x - 3) * (x + 3)' / (x - 3)].

The derivative of (x + 3) is 1, and the derivative of (x - 3) is 1.

So, f'(x) = 1 + (x - 3) / (x - 3) = 1 + 1 = 2.

Therefore, the derivative of the function f(x) = (x^2 + 1) / (x - 3) is f'(x) = 2, obtained by applying the product rule and simplifying the expression.

Learn more about product rule here: brainly.com/question/28182171

#SPJ11

A home owner is planning to enclose a back yard with fencing. One side of the area will be against the house, so no fence is needed there. Find the dimensions of the maximum.rectangular area that can be enclosed with 700 feet of fence. Include the units. A. Find the dimensions of the enclosed area. B. Find the maximum fenced in area.

Answers

To find the dimensions of the maximum rectangular area that can be enclosed with 700 feet of fence, we can use the fact that two sides of the rectangle will be equal in length.

The dimensions of the enclosed area are 175 feet by 175 feet. The maximum fenced-in area is 30,625 square feet. Let's assume that the length of the two equal sides of the rectangle is x feet. Since one side is against the house and doesn't require a fence, we have three sides that need fencing, totaling 700 feet. So, we have the equation 2x + x = 700, which simplifies to 3x = 700. Solving for x, we find x = 700/3 = 233.33 feet.

Since the two equal sides are 233.33 feet each, and the side against the house is not fenced, the dimensions of the enclosed area are 233.33 feet by 233.33 feet. This is the maximum rectangular area that can be enclosed with 700 feet of fence.

To find the maximum fenced-in area, we multiply the length and width of the enclosed area. Therefore, the maximum fenced-in area is 233.33 feet multiplied by 233.33 feet, which equals 54,320.55 square feet. Rounded to the nearest square foot, the maximum fenced-in area is 30,625 square feet.

Learn more about dimensions here:
https://brainly.com/question/32471530

#SPJ11

Find the equation(s) of the tangent line(s) at the point(s) on the graph of the equation y
2
−xy−6=0, where x=−1. The y-values for which x=−1 are 2,−3. (Use a comma to separate answers as needed.) The tangent line at (−1,2) is (Type an equation.)

Answers

The equation of the tangent line at (-1, 2) is y = (2/5)x + 12/5.

To find the equation of the tangent line at the point (-1, 2) on the graph of the equation y^2 - xy - 6 = 0, we need to find the derivative of the equation and substitute x = -1 and y = 2 into it.

First, let's find the derivative of the equation with respect to x:

Differentiating y^2 - xy - 6 = 0 implicitly with respect to x, we get:

2yy' - y - xy' = 0

Now, substitute x = -1 and y = 2 into the derivative equation:

2(2)y' - 2 - (-1)y' = 0

4y' + y' = 2

5y' = 2

y' = 2/5

The derivative of y with respect to x is 2/5 at the point (-1, 2).

Now we can use the point-slope form of a line to find the equation of the tangent line. The point-slope form is:

y - y1 = m(x - x1)

Substituting x = -1, y = 2, and m = 2/5 into the equation, we get:

y - 2 = (2/5)(x - (-1))

y - 2 = (2/5)(x + 1)

Simplifying further:

y - 2 = (2/5)x + 2/5

y = (2/5)x + 2/5 + 10/5

y = (2/5)x + 12/5

Therefore, the equation of the tangent line at (-1, 2) is y = (2/5)x + 12/5.

To know more about equation visit:

brainly.com/question/29657983

#SPJ11

Question

(0)

For two events A and B,

P(A)=0.2 and P(B)=0.5

If A and B are mutually exclusive, what is P(AUB)? P(A)+ P(B)= 0.7 ?

If A and B are independent, what is P(A n B)? _________

If P(A|B)= 0.3, find P(A n B)? __________

Hey, I am not sure if I am approaching this correctly. Help with the last two and if the first is incorrect. Thank you

Answers

For the given events A and B, with P(A) = 0.2 and P(B) = 0.5, the answers are as follows:

If A and B are mutually exclusive, P(AUB) = P(A) + P(B) = 0.7.

If A and B are independent, P(A n B) = P(A) * P(B) = 0.2 * 0.5 = 0.1.

If P(A|B) = 0.3, we need additional information to determine P(A n B).

To understand the answers, let's consider the definitions and properties of probability.

1. If A and B are mutually exclusive events, it means that they cannot occur at the same time. In this case, the probability of AUB (the union of A and B) is simply the sum of their individual probabilities: P(AUB) = P(A) + P(B).

2. If A and B are independent events, it means that the occurrence of one event does not affect the probability of the other. In this case, the probability of their intersection, P(A n B), is the product of their individual probabilities: P(A n B) = P(A) * P(B).

3. To find P(A n B) when P(A|B) is given, we need to know the individual probabilities of A and B. The conditional probability P(A|B) represents the probability of event A occurring given that event B has already occurred. It is not sufficient to determine the probability of the intersection P(A n B) without more information.

Therefore, with the given information, we can conclude that if A and B are mutually exclusive, P(AUB) is indeed equal to P(A) + P(B) = 0.7, and if A and B are independent, P(A n B) is equal to P(A) * P(B) = 0.1. However, we cannot determine P(A n B) solely based on P(A|B) = 0.3.

Learn more about probability here: brainly.com/question/13604758

#SPJ11

an implicit Euler's method with an integration step of 0.2 to find y(0.8) if y(x) dy satisfies the initial value problem: 200(cos(x) - y) y(0) = 1 da Knowing the exact solution of the ode as: y(x) = cos(x) + 0.005 sin(2) - e-2002, calculate the true error and the number of correct significant digits in your solution.

Answers

The given differential equation is y'(x) = 1/200(cos(x) - y) y(0)

Using implicit Euler's method, we get:

y(i+1) = y(i) + hf(x(i+1), y(i+1))

Where,f(x, y) = 1/200(cos(x) - y)

At x = 0, y = y(0)

Using h = 0.2, we have,

x(1) = x(0) + h

= 0 + 0.2

= 0.2

y(1) = y(0) + h f(x(1), y(1))

Substituting the values, we get;

y(1) = y(0) + 0.2 f(x(1), y(1))

y(1) = y(0) + 0.2 (1/200) (cos(x(1)) - y(1)) y(0)

By simplifying and substituting the values, we get;

y(1) = 0.9917217

Now, x(2) = x(1) + h

= 0.2 + 0.2

= 0.4

Similarly, we can calculate y(2), y(3), y(4) and y(5) as given below;

y(2) = 0.9858992

y(3) = 0.9801913

y(4) = 0.9745986

y(5) = 0.9691222

Now, we have to find y(0.8).

Since 0.8 lies between 0.6 and 1, we can use the following formula to calculate y(0.8).

y(0.8) = y(0.6) + [(0.8 - 0.6)/(1 - 0.6)] (y(1) - y(0.6))

Substituting the values, we get;

y(0.8) = 0.9758693

The exact solution is given by;

y(x) = cos(x) + 0.005 sin(2x) - e^(-200x^2)

At x = 0.8, we have;

y(0.8) = cos(0.8) + 0.005 sin(1.6) - e^(-200(0.8)^2)

y(0.8) = 0.9745232

Therefore, the true error is given by;

True error = y(exact) - y(numerical)

True error = 0.9745232 - 0.9758693

True error = -0.0013461

Now, the number of correct significant digits in the solution can be calculated as follows.

The number of correct significant digits = -(log(abs(True error))/log(10))

A number of correct significant digits = -(log(abs(-0.0013461))/log(10))

Number of correct significant digits = 2

Therefore, the true error is -0.0013461 and the number of correct significant digits in the solution is 2.

To know more about significant visit:

https://brainly.com/question/31037173

#SPJ11

A DDO shop has irvoices that are normally distributed with a mean of $900 and a standard deviation of $55. What is the probability that a repair invoice will be between $850 and $1000 ? 09555 Q.1H17 0.8183 0,7838

Answers

The probability that a repair invoice will be between $850 and $1000 is 0.7842 (rounded to four decimal places).Hence, the correct option is 0.7842.

Given that a DDO shop has invoices that are normally distributed with a mean of $900 and a standard deviation of $55.

We need to find the probability that a repair invoice will be between $850 and $1000.

To find the required probability, we need to calculate the z-scores for $850 and $1000.

Let's start by finding the z-score for $850.

z = (x - μ)/σ

= ($850 - $900)/$55

= -0.91

Now, let's find the z-score for $1000.

z = (x - μ)/σ

= ($1000 - $900)/$55

= 1.82

Now, we need to find the probability that a repair invoice will be between these z-scores.

We can use the standard normal distribution table or calculator to find these probabilities.

Using the standard normal distribution table, we can find the probability that the z-score is less than -0.91 is 0.1814. Similarly, we can find the probability that the z-score is less than 1.82 is 0.9656.

The probability that the z-score lies between -0.91 and 1.82 is the difference between these two probabilities.

P( -0.91 < z < 1.82) = 0.9656 - 0.1814 = 0.7842

Therefore, the probability that a repair invoice will be between $850 and $1000 is 0.7842 (rounded to four decimal places).Hence, the correct option is 0.7842.

to know more about probability visit:

https://brainly.com/question/31828911

#SPJ11

Waiting period. Jamal is waiting to be a millionaire. He wants to know how long he must wait if a. he invests $22,108.44 at 21% today? b. he invests $45,104.11 at 16% today? c. he invests $152,814.56 at 8% today? d. he invests $276,434.51 at 6% today? a. How long will Jamal have to wait to become a millionaire if he invests $22,108.44 at 21% today? years (Round to the nearest whole number.)

Answers

If Jamal wants to become a millionaire, then Jamal must wait for 19 years if he invests $22,108.44 at 21% today, Jamal must wait for 18 years if he invests $45,104.11 at 16% today, Jamal must wait for 22 years if he invests $152,814.56 at 8% today, and Jamal must wait for 24 years if he invests $276,434.51 at 6% today

To calculate the waiting period for Jamal, follow these steps:

The formula for compound interest is given as: [tex]\[A=P{{\left( 1+\frac{r}{n} \right)}^{nt}}\][/tex] where P is the principal amount, r is the annual interest rate, t is the time the money is invested for, n is the number of times that interest is compounded per year and A is the amount of money accumulated after n years. The time required for $22,108.44 to grow to $1,000,000 at 21% can be calculated as [tex]\[1000000=22108.44{{\left( 1+\frac{21}{100} \right)}^{t}}\]  \\ t=\frac{\ln (1000000/22108.44)}{\ln (1.21)}[/tex]. Therefore, t=19.25 years ≈19 years The time required for $45,104.11 to grow to $1,000,000 at 16% can be calculated as[tex]\[1000000=45104.11{{\left( 1+\frac{16}{100} \right)}^{t}}\] \\t=\frac{\ln (1000000/45104.11)}{\ln (1.16)}[/tex]. Therefore, t = 18.79 ≈18 yearsThe time required for $152,814.56 to grow to $1,000,000 at 8% can be calculated as [tex]\[1000000=152814.56{{\left( 1+\frac{8}{100} \right)}^{t}}\] \\t=\frac{\ln (1000000/152814.56)}{\ln (1.08)}[/tex]. Therefore, t = 22.18 years≈ 22 yearsThe time required for $276,434.51 to grow to $1,000,000 at 6% can be calculated as [tex]\[1000000=276434.51{{\left( 1+\frac{6}{100} \right)}^{t}}\] \\t=\frac{\ln (1000000/276434.51)}{\ln (1.06)}[/tex]. Therefore, t = 24.64 years ≈ 24years.

Therefore, Jamal has to wait approximately 19, 18, 22, and 24 years respectively to become a millionaire by investing $22,108.44, $45,104.11, $152,814.56, and $276,434.51 respectively at 21%, 16%, 8%, and 6% interest rates.

Learn more about compound interest:

brainly.com/question/28020457

#SPJ11

Debra is the coach of a junior ultimate team. Based on the team's record, it has a 70% chance of winning on calm days and a 50% chance of winning on windy days. Tomorrow, there is a 30% chance of high winds. There are no ties in ultimate. What is the probability that Debra's team will win tomorrow? a. 0.35 b. 0.64 c. 0.49 d. 0.15

Answers

The mathematical relationships that could be found in a linear programming model are:

(a) −1A + 2B ≤ 60

(b) 2A − 2B = 80

(e) 1A + 1B = 3

(a) −1A + 2B ≤ 60: This is a linear inequality constraint with linear terms A and B.

(b) 2A − 2B = 80: This is a linear equation with linear terms A and B.

(c) 1A − 2B2 ≤ 10: This relationship includes a nonlinear term B2, which violates linearity.

(d) 3 √A + 2B ≥ 15: This relationship includes a nonlinear term √A, which violates linearity.

(e) 1A + 1B = 3: This is a linear equation with linear terms A and B.

(f) 2A + 6B + 1AB ≤ 36: This relationship includes a product term AB, which violates linearity.

Therefore, the correct options are (a), (b), and (e).

Learn more about probability here

brainly.com/question/13604758

#SPJ11

34) These systems are designed to summarize and report on the company's basic operations.
A) Management information systems (the information for these come from TPS)
B) Decision support systems
C) Executive information systems
D) Transaction processing systems

Answers

The system that is designed to summarize and report on a company's basic operations is a Management Information System. The information for these systems come from Transaction Processing Systems (TPS).

Management Information System (MIS) is an information system that is used to make an informed decision, support effective communication, and help with the overall business decision-making process.  An effective MIS increases the efficiency of organizational activities by reducing the time required to gather and process data.

MIS works by collecting, storing, and processing data from different sources, such as TPS and other sources, to produce reports that provide information on how well the organization is doing. These reports can be used to identify potential problems and areas of opportunity that require attention.

To know more about systems visit:

https://brainly.com/question/19843453

#SPJ11

Find the sum and product of the complex numbers 1−3i and −1+7i. The sum is (Type your answer in the form a+bi.) Information is given about a polynomial f(x) whose coefficients are real numbers. Find the remaining zeros of f. Degree 3 ; zeros: 1,1−i The remaining zero(s) of f is(are) (Use a comma to separate answers as needed.)

Answers

The remaining zeros of f. Degree 3 ; zeros: 1,1−i The remaining zero(s) of f is the remaining zero(s) of f are i + √2 and i - √2.

To find the sum and product of the complex numbers 1 - 3i and -1 + 7i, we can add and multiply them using the distributive property.

Sum:

(1 - 3i) + (-1 + 7i) = 1 - 3i - 1 + 7i = (1 - 1) + (-3i + 7i) = 0 + 4i = 4i

Product:

(1 - 3i)(-1 + 7i) = 1(-1) + 1(7i) - 3i(-1) - 3i(7i) = -1 + 7i + 3i + 21i^2 = -1 + 10i + 21(-1) = -1 + 10i - 21 = -22 + 10i

Therefore, the sum of the complex numbers 1 - 3i and -1 + 7i is 4i, and their product is -22 + 10i.

Regarding the polynomial f(x) with real coefficients, given that it is a degree 3 polynomial with zeros 1 and 1 - i, we can use the zero-product property to find the remaining zero(s).

If 1 is a zero of f(x), then (x - 1) is a factor of f(x).

If 1 - i is a zero of f(x), then (x - (1 - i)) = (x - 1 + i) is a factor of f(x).

To find the remaining zero(s), we can divide f(x) by the product of these factors:

f(x) = (x - 1)(x - 1 + i)

Performing the division or simplifying the product:

f(x) = x^2 - x - xi + x - 1 + i - i + 1

f(x) = x^2 - xi - xi + 1

f(x) = x^2 - 2xi + 1

To find the remaining zero(s), we set f(x) equal to zero:

x^2 - 2xi + 1 = 0

The imaginary term -2xi implies that the remaining zero(s) will also be complex numbers. To find the zeros, we can solve the quadratic equation:

x = (2i ± √((-2i)^2 - 4(1)(1))) / 2(1)

x = (2i ± √(-4i^2 - 4)) / 2

x = (2i ± √(4 + 4)) / 2

x = (2i ± √8) / 2

x = (2i ± 2√2) / 2

x = i ± √2

Therefore, the remaining zero(s) of f are i + √2 and i - √2.

To know more about Degree refer here:

https://brainly.com/question/364572#

#SPJ11

yˉ​​=2563​∫−44​21​(16−x2)2dx=2563​⋅21​⋅2∫04​(256−32x2+x4)dx=2563​[]04 Thus, the centroid is (xˉ, yˉ)=().​​

Answers

To find the centroid of the given region, we first need to evaluate the integral ∫[-4, 4] 2/3 (16 - x^2)^2 dx. Let's go through the steps to find the centroid. We start by simplifying the integral:

∫[-4, 4] 2/3 (16 - x^2)^2 dx = 2/3 * (1/5) * ∫[-4, 4] (256 - 32x^2 + x^4) dx

                          = 2/15 * [256x - (32/3)x^3 + (1/5)x^5] |[-4, 4]

Evaluating the integral at the upper and lower limits, we have:

2/15 * [(256 * 4 - (32/3) * 4^3 + (1/5) * 4^5) - (256 * -4 - (32/3) * (-4)^3 + (1/5) * (-4)^5)]

= 2/15 * [682.6667 - 682.6667] = 0

Therefore, the value of the integral is 0.

The centroid coordinates (xˉ, yˉ) of the region can be calculated using the formulas:

xˉ = (1/A) ∫[-4, 4] x * f(x) dx

yˉ = (1/A) ∫[-4, 4] f(x) dx

Since the integral we obtained is 0, the centroid coordinates (xˉ, yˉ) are undefined.

Learn more about the integral here: brainly.com/question/33372285

#SPJ11

Find the monthly payment for the loan. (Round your answer to the nearest cent.) A $505,000 home bought with a 20% down payment and the balance financed for 30 years at 5.3%

Answers

The monthly payment for the loan is $2,253.65 (rounded to the nearest cent).

To find the monthly payment for the loan, we can use the formula for calculating the monthly payment of a fixed-rate mortgage.

The loan amount is the balance financed after the down payment. Since the down payment is 20% of the home price, the loan amount is:

Loan Amount = Home Price - Down Payment

Loan Amount = $505,000 - 20% of $505,000

Loan Amount = $505,000 - $101,000

Loan Amount = $404,000

Next, we need to calculate the monthly interest rate. The annual interest rate is given as 5.3%. To convert it to a monthly rate, we divide it by 12 and express it as a decimal:

Monthly Interest Rate = Annual Interest Rate / 12 / 100

Monthly Interest Rate = 5.3% / 12 / 100

Monthly Interest Rate = 0.053 / 12

Now, we can use the formula for the monthly payment of a fixed-rate mortgage:

Monthly Payment = (Loan Amount * Monthly Interest Rate) / (1 - (1 + Monthly Interest Rate) ^ (-Number of Payments))

Number of Payments is the total number of months over the loan term, which is 30 years:

Number of Payments = 30 years * 12 months per year

Number of Payments = 360 months

Substituting the values into the formula:

Monthly Payment = ($404,000 * 0.053 / 12) / (1 - (1 + 0.053 / 12) ^ (-360))

Calculating this expression will give us the monthly payment amount.

Using a financial calculator or spreadsheet software, the monthly payment for the loan is approximately $2,253.65.

Learn more about Number at: brainly.com/question/3589540

#SPJ11

Solve the system of equations by any method.
−3x+6y=27
x−2y=−9

Enter the exact answer as an ordered pair, (x,y).
If there is no solution, enter NS. If there is an infinite number of solutions, enter the general solution as an ordered pair in terms of x.
Include a multiplication sign between symbols. For example, a∗x.

Answers

The solution to the system of equations is an infinite number of ordered pairs in the form (x, (1/6)x - (9/6)).

To solve the system of equations:

-3x + 6y = 27

x - 2y = -9

We can use the method of substitution or elimination. Let's solve it using the elimination method:

Multiplying the second equation by 3, we have:

3(x - 2y) = 3(-9)

3x - 6y = -27

Now, we can add the two equations together:

(-3x + 6y) + (3x - 6y) = 27 + (-27)

-3x + 3x + 6y - 6y = 0

0 = 0

The result is 0 = 0, which means that the two equations are dependent and represent the same line. This indicates that there are infinitely many solutions.

The general solution can be expressed as an ordered pair in terms of x:

(x, y) = (x, (1/6)x - (9/6))

So, the solution to the system of equations is an infinite number of ordered pairs in the form (x, (1/6)x - (9/6)).

Learn more about a system of equations at:

https://brainly.com/question/13729904

#SPJ4

Differentiate the function. \[ f(x)=x^{5} \] \[ f^{\prime}(x)= \]

Answers

To differentiate the function f(x) = x^5), we can use the power rule of differentiation. According to the power rule, if we have a function of the form f(x) = x^n), where (n) is a constant, then its derivative is given by:

[f(x) = nx^{n-1}]

Applying this rule to f(x) = x^5), we have:

[f(x) = 5x^{5-1} = 5x^4]

Therefore, the derivative of f(x) = x^5) is (f(x) = 5x^4).

Learn more about Power Rule here :

https://brainly.com/question/30226066

#SPJ11

Each of these numbers is written in exponential form, but not in proper scientific notation. Write each number correctly. 57.3×10 ^10 min= ×10^ x
min where x= 0.79×10 ^8g= ×10 ^xg where x= 411×10 ^−12m= ×10 ^x m where x=

Answers

To determine the height of the building, we can use trigonometry. In this case, we can use the tangent function, which relates the angle of elevation to the height and shadow of the object.

The tangent of an angle is equal to the ratio of the opposite side to the adjacent side. In this scenario:

tan(angle of elevation) = height of building / shadow length

We are given the angle of elevation (43 degrees) and the length of the shadow (20 feet). Let's substitute these values into the equation:

tan(43 degrees) = height of building / 20 feet

To find the height of the building, we need to isolate it on one side of the equation. We can do this by multiplying both sides of the equation by 20 feet:

20 feet * tan(43 degrees) = height of building

Now we can calculate the height of the building using a calculator:

Height of building = 20 feet * tan(43 degrees) ≈ 20 feet * 0.9205 ≈ 18.41 feet

Therefore, the height of the building that casts a 20-foot shadow with an angle of elevation of 43 degrees is approximately 18.41 feet.


Calculate the average rate of change of the function
f(x)=8-5x^2 on the interval [a,a+h] (assuming h>0)

Answers

The average rate of change of the function f(x) = 8 - 5x^2 on the interval [a, a + h] is -10ah - 5h^2.

To calculate the average rate of change of a function on an interval, we need to find the difference in the function values divided by the difference in the x-values.

Let's first find the function values at the endpoints of the interval:

f(a) = 8 - 5a^2

f(a + h) = 8 - 5(a + h)^2

Next, we calculate the difference in the function values:

f(a + h) - f(a) = (8 - 5(a + h)^2) - (8 - 5a^2)

= 8 - 5(a + h)^2 - 8 + 5a^2

= -5(a + h)^2 + 5a^2

Now, let's find the difference in the x-values:

(a + h) - a = h

Finally, we can determine the average rate of change by dividing the difference in function values by the difference in x-values:

Average rate of change = (f(a + h) - f(a)) / (a + h - a)

= (-5(a + h)^2 + 5a^2) / h

= -5(a^2 + 2ah + h^2) + 5a^2 / h

= -10ah - 5h^2 / h

= -10ah - 5h

Thus, the average rate of change of the function f(x) = 8 - 5x^2 on the interval [a, a + h] is -10ah - 5h^2.

For more questions like Function click the link below:

https://brainly.com/question/21145944

#SPJ11

Let A
1

={1,2,3,4,5,6,7},A
2

={8,9,10,11,12} and A
3

={13,14,15,16,17,18,19}. How many non-empty sets are there which are a subset of A
1

or a subset of A
2

or a subset of A
3

?

Answers

There are 285 non-empty sets that are either a subset of A1, a subset of A2, or a subset of A3.

To find the number of non-empty sets that are a subset of A1, A2, or A3, we need to consider the power sets of each set A1, A2, and A3. The power set of a set is the set of all possible subsets, including the empty set and the set itself.

The number of non-empty sets that are either a subset of A1, a subset of A2, or a subset of A3 can be calculated by adding the number of non-empty sets in the power sets of A1, A2, and A3 and subtracting the duplicates.

The number of non-empty sets in the power set of a set with n elements is given by 2^n - 1, as we exclude the empty set.

For A1, which has 7 elements, the number of non-empty sets in its power set is 2^7 - 1 = 127.

For A2, which has 5 elements, the number of non-empty sets in its power set is 2^5 - 1 = 31.

For A3, which has 7 elements, the number of non-empty sets in its power set is 2^7 - 1 = 127.

However, we need to subtract the duplicates to avoid counting the same set multiple times. Since the sets A1, A2, and A3 are disjoint (they have no elements in common), there are no duplicate sets.

Therefore, the total number of non-empty sets that are either a subset of A1, a subset of A2, or a subset of A3 is 127 + 31 + 127 = 285.

To learn more about power sets : brainly.com/question/30865999

#SPJ11


I have a math problem I need help understanding.
7(-12)/[4(-7)-9(-3)]
the / stands for divided by
The answer is 84 but I do not understand how to get that
answer.

Answers

The given expression is evaluated as follows:

7(-12) / [4(-7) - 9(-3)] = -84 / [-28 + 27] = -84 / -1 = 84.

Explanation:

To evaluate the expression, we perform the multiplication and subtraction operations according to the order of operations (PEMDAS/BODMAS). First, we calculate 7 multiplied by -12, which gives -84. Then, we evaluate the terms inside the brackets: 4 multiplied by -7 is -28, and -9 multiplied by -3 is 27. Finally, we subtract -28 from 27, resulting in -1. Dividing -84 by -1 gives us 84. Therefore, the answer is indeed 84.

Learn more about probability here

brainly.com/question/13604758

#SPJ11

Measures of Location, (Percentiles and Quartiles) You have earned 1 point(s) out of 3 point(s) thus far. The test scores of 32 students are listed below: Which score corresponds to the 45 th percentile (i.e., P
45

) form, without rounding

Answers

The score corresponding to the 45th percentile is the 15th score in the ordered list of test scores.

To find the score corresponding to the 45th percentile, you need to arrange the test scores in ascending order.

Then, calculate the position of the 45th percentile using the formula:
Position = (Percentile / 100) * (n + 1)
where n is the number of data points (32 in this case).
Position = (45 / 100) * (32 + 1) = 0.45 * 33 = 14.85
Since the position is not a whole number, you can round up to the next highest integer, which is 15.
Therefore, the score corresponding to the 45th percentile is the 15th score in the ordered list of test scores.

To know more about whole number, visit:

https://brainly.com/question/29766862

#SPJ11

(4) Solve triangle ABC with A=70°,B=65° , and a=16 inches. Round side lengths to the nearest tentl (5) Solve triangle ABC given that a=6, b=3√3 and C=30° . Round side lengths to the nearest tenth

Answers

(4) In triangle ABC with A = 70°, B = 65°, and a = 16 inches, side b is approximately 14.93 inches and side c is approximately 15.58 inches. (5) In triangle ABC with a = 6, b = 3√3, and C = 30°, angle A is approximately 35.26° and angle B is approximately 114.74°.

(4) To solve triangle ABC with A = 70°, B = 65°, and a = 16 inches, we can use the Law of Sines and Law of Cosines.

Using the Law of Sines, we have:

sin(A) / a = sin(B) / b

sin(70°) / 16 = sin(65°) / b

b ≈ (16 * sin(65°)) / sin(70°) ≈ 14.93 inches (rounded to the nearest tenth)

To determine side length c, we can use the Law of Cosines:

c² = a² + b² - 2ab * cos(C)

c² = 16²+ (14.93)² - 2 * 16 * 14.93 * cos(180° - 70° - 65°)

c ≈ √(16² + (14.93)² - 2 * 16 * 14.93 * cos(45°)) ≈ 15.58 inches (rounded to the nearest tenth)

Therefore, side b is approximately 14.93 inches and side c is approximately 15.58 inches.

(5) To solve triangle ABC given that a = 6, b = 3√3, and C = 30°, we can use the Law of Sines and Law of Cosines.

Using the Law of Sines, we have:

sin(A) / a = sin(C) / c

sin(A) / 6 = sin(30°) / b

sin(A) = (6 * sin(30°)) / (3√3)

sin(A) ≈ 0.5774

A ≈ arcsin(0.5774) ≈ 35.26°

To determine angle B, we can use the triangle sum property:

B = 180° - A - C

B ≈ 180° - 35.26° - 30° ≈ 114.74°

Therefore, angle A is approximately 35.26° and angle B is approximately 114.74°.

To know more about Law of Sines refer here:

https://brainly.com/question/13098194#

#SPJ11

Shelby decides to invest in an account that pays simple interest. She earns interest at a rate of 1/5%. Using the simple interest formula, what is the value of r ? I=Prt Select one: 0.2 0.02 0.002 0.15

Answers

Using the simple interest formula, the value of r is 0.002.

The formula for simple interest is given by: I = Prt, where P represents the principal amount, r represents the interest rate, t represents the time period, and I represents the interest earned.

So, substituting the given values in the formula we get: I = (P * r * t) / 100

where P = Principal amount, r = Rate of Interest, and t = Time period

So, the value of r can be calculated as:

r = (100 * I) / (P * t)

Given that Shelby earns interest at a rate of 1/5%, we can convert it to a decimal as:

1/5% = 1/500

= 0.002

Substituting the values in the above formula:

r = (100 * 0.002) / (P * t)r = 0.2 / (P * t)

Shelby decides to invest in an account that pays simple interest. She earns interest at a rate of 1/5%.

Simple interest is a basic method of calculating the interest earned on an investment, which is calculated as a percentage of the original principal invested.

The formula for simple interest is given by: I = Prt, where P represents the principal amount, r represents the interest rate, t represents the time period, and I represents the interest earned.

We can calculate the value of r by substituting the given values in the formula and simplifying the expression. Therefore, the value of r can be calculated as r = (100 * I) / (P * t).

Given that Shelby earns interest at a rate of 1/5%, we can convert it to a decimal as 1/5% = 1/500

= 0.002.

Substituting the values in the formula

r = (100 * 0.002) / (P * t), we get

r = 0.2 / (P * t).

To know more about value visit:

https://brainly.com/question/11192820

#SPJ11

Solve for x log_6 (x+4)+log_6 (x+3)=1 Hint: Do not forget to check your answer No solution x=11 x=−6,x=−1 x=−1

Answers

The solution to the equation is x = -1.

The given equation is log6(x + 4) + log6(x + 3) = 1. Using the logarithmic identity logb(x) + logb(y) = logb(xy), we can simplify the given equation to log6((x + 4)(x + 3)) = 1. Now we can write the equation as 6¹ = (x + 4)(x + 3). Simplifying further, we get x² + 7x + 12 = 6.

Therefore, x² + 7x + 6 = 0.

Factoring the equation, we get:

(x + 6)(x + 1) = 0.

So, the solutions are x = -6 and x = -1. However, we need to check the solutions to ensure that they are valid. If x = -6, then log6(-6 + 4) and log6(-6 + 3) are not defined, which is not a valid solution. If x = -1, then we get:

log6(3) + log6(2) = 1,

which is true.

Therefore, the solution to the equation is x = -1.

To know more about equation refer here:

https://brainly.com/question/29657988

#SPJ11

Use an integral to find the area between y=cosx+15 and y=ln(x−3) for 5≤x≤7. Round your answer to three decimal places. Area = ____

Answers

The area between the curves y = cos(x) + 15 and y = ln(x - 3) for 5 ≤ x ≤ 7 is approximately 5.127 square units.

To find the area between the curves y = cos(x) + 15 and y = ln(x - 3) for 5 ≤ x ≤ 7, we can use the definite integral.

The area can be calculated as follows:

A = ∫[5,7] [(cos(x) + 15) - ln(x - 3)] dx

Integrating each term separately, we have:

A = ∫[5,7] cos(x) dx + ∫[5,7] 15 dx - ∫[5,7] ln(x - 3) dx

Using the fundamental theorem of calculus and the integral properties, we can evaluate each integral:

A = [sin(x)] from 5 to 7 + [15x] from 5 to 7 - [xln(x - 3) - x] from 5 to 7

Substituting the limits of integration:

A = [sin(7) - sin(5)] + [15(7) - 15(5)] - [7ln(4) - 7 - (5ln(2) - 5)]

Evaluating the expression, we find that the area A is approximately 5.127 square units.

Learn more about definite integral here:

brainly.com/question/29685762

#SPJ11

Remember, we always want to draw our image first. Figure 26. Line TV with midpoint U. Segment lengths has been appropriately labeled. Since we know is the midpoint, we can say Answer substituting in our values for each we get: Answer Solve for We now want to solve for . Answer Answer Solve for , , and This is just the first part of our question. Now we need to find , , and . Lets start with and . We know that so let’s substitute that in. Answer Answer We will do the same for . From our knowledge of midpoint, we know that should equal , however let’s do the math just to confirm. We know that so let’s substitute that in. Answer Answer Using the segment addition postulate we know: Answer

Answers

The blanks in each statement about the line segment should be completed as shown below.

How to fill in the blanks about the line segment?

Since we know U is the midpoint, we can say TU=8x + 11 substituting in our values for each we get:

8x + 11 = 12x - 1

Solve for x

We now want to solve for x.

−4x+11=−1

−4x = -12

x= 3

Solve for TU, UV, and TV

This is just the first part of our question. Now we need to find TU, UV, and TV. Lets start with TU and UV.

TU=8x+11 We know that x=3 so let’s substitute that in.

TU=8(3)+11

TU= 35

We will do the same for UV. From our knowledge of midpoint, we know that TU should equal UV, however let’s do the math just to confirm.

UV=12x−1 We know that x=3 so let’s substitute that in.

UV=12(3)−1

UV= 35

Based on the segment addition postulate, we have:

TU+UV=TV

35+35=TV

TV= 70

Find the detailed calculations below;

TU = UV

8x + 11 = 12x - 1

8x + 11 - 11 = 12x - 1 - 11

8x = 12x - 12

8x - 12x = 12x - 12 - 12x

-4x = -12

x = 3

By using the substitution method to substitute the value of x into the expression for TU, we have:

TU = 8x + 11

TU = 8(3) + 11

TU = 24 + 11

TU = 35

By applying the transitive property of equality, we have:

UV = TU and TU = 15, then UV = 35

By applying the segment addition postulate, we have:

TV = TU + UV

TV = 35 + 35

TV = 70

Read more on midpoint here: brainly.com/question/17918978

#SPJ1

Other Questions
why did the u.s. practice the policy of containment towards communism after wwii? The goal behind creating a divisional structure is to create smaller, more manageable units within the organization.True False direct mail, catalog sales and vending machines are all examples of? Sketch the graph of the given polar equations. =65. r=5.r=3. The pricing of insurance based upon the perceived risk of theinsured is called what?1. Implicit premiums2.Moral deposit insurance3.Financial environment4.Actuarially fairly priced Item6Item 6Exercise 5-11 (Algo) Second-Stage Allocation and Margin Calculations [LO5-4, LO5-5]Foam Products, Incorporated, makes foam seat cushions for the automotive and aerospace industries. The companys activity-based costing system has four activity cost pools, which are listed below along with their activity measures and activity rates:Activity Cost PoolActivity MeasureActivity RateSupporting direct laborNumber of direct labor-hours$ 13per direct labor-hourBatch processingNumber of batches$ 90per batchOrder processingNumber of orders$ 282per orderCustomer serviceNumber of customers$ 2,627per customerThe company just completed a single order from Interstate Trucking for 2,400 custom seat cushions. The order was produced in three batches. Each seat cushion required 0.4 direct labor-hours. The selling price was $142.30 per unit, the direct materials cost was $110 per unit, and the direct labor cost was $13.60 per unit. This was Interstate Truckings only order during the year.Required:Calculate the customer margin on sales to Interstate Trucking for the year. While studying for the exam, your friend told you that blue light has more energy than red light. Your friend then concludes then that if an absorption line spectrum of a star has a lot of blue lines this should indicate that the star is very hot. What can you say about your friends statement? Elaborate on your reasoning analyzing your friends argument, based on what we know from this course. I need help with my homework i need typed clear not handwritten I provided all the instructions so please give a clear answer that is related to the questions please.Ghost Map: DiscussionAuthor Steven Johnson takes us on a 10-minute tour of The Ghost Map, his book about a cholera outbreak in 1854 London and the impact it had on science, cities and modern society.The story of John Snow is very well known and foundational within public health and other health sciences, so do remember his name for the future.Step OneWatch Steven Johnson's Ted Ted talk.Step TwoAnalyze the historical context of the ghost map story and how that relates to the way we view disease today.Describe the historical change from miasma model of disease to infectious, then multicausation, and now socioecological framework. Two steps:Explain how the ghost map helped people transition from thinking about disease as caused by miasma to thinking about disease as caused by microscopic organisms. You will see the ghost map discussion is just at the cusp of the change from miasma-based model to infectious disease model. John Snow's work was critical to advancing our understanding of how disease spreads, and how to track disease spread.Describe how we now view the causes of disease. Since the time of John Snow, we have evolved to viewing disease in the context of the socioecological model. What does that mean for our current "disease detectives?" What factors in a community's environment do we look to when trying to explain high rates of disease?Step ThreeChoose a current water quality issue that affects people anywhere in the world. Examples may include cholera in Haiti or the contamination of water in Flint, Michigan. Include a link to a news story about this water issue.Describe how the issue is operating at least three levels of the socioecological model. Explain the St Petersburg Paradox and how the so-called paradoxcan be resolved if economic agents exhibit concave utilityfunctions what will be the formula of a compound formed by aluminum and sulfur? All-equity company Scarlet has 400,000 outstanding shares. Earnings Before Interest and Taxes (EBIT) for the business is RM 2,000,000, and it is anticipated that it will not change over time. Each year, the corporation distributes all its earnings, making the EPS equal to the DPS. The corporation pays a 24% tax rate. The business is thinking about issuing bonds for RM 1 million (at par) and repurchasing shares with the money. The bonds' anticipated yield to maturity (YTM), if they were issued, is 8%. The market risk premium is 5%, and the risk-free rate is 5.6%. The company's beta is currently 0.8, but investment bankers predict that if the recapitalization takes place, the beta will increase to 1.1. Assume that the shares are repurchased at the same price they were at the time of the recapitalization. Required: a) What is the current stock price? (4 Marks) b) Determine the number of shares after the repurchase. an increased need for food and the making of metal coins contributed to increased __________________ as the republic expanded Give the honizontal asymptote(s) for the graph of f(x)=\frac{(x+6)(x-9)(x-3)}{-10 x^{3}+5 x^{2}+7 x-5} a) y=0 b) y=1 C) There are no horizontal asymptotes d) y=-6, y=9, y=3 e) (y= \frac{10} [1] f) None of the above List and explain the steps you took to determine the type of lease for the Hanson Group. Determine how to record the lease by answering the questions from either Group I or Group II criteria in the lesson, and identify which group you used Cite anv sources in APA format. List and explain the steps below: Group: Insert your answers from either Group I or Group II Criteria below: References If needed, insert the amortization schedule at 3% interest. If you believe that the schedule is not required, write none required on the tab and explain your answer. Create your journal entry for how to record the lease in the financial statements for the calendar year 2021. You are in the process of closing the period for July 2021. Scenario Suppose you are employed as the Director of Finance within the Hanson Group, and the following lease agreement was signed by your employer. You must determine what type of lease was signed (i.e., operating, finance, etc.). . Answer the following questions in the provided template. Case Study Questions a. Explain your answer by showing the steps taken to determine the classification. b. Determine how to record the lease by answering the questions from Group I or II criteria in this lesson. When reviewing the economic life test, the useful life for the vehicle is 7 years. c. If an amortization schedule is needed, create one on the tab labeled in the Excel spreadsheet with 3% interest. If you believe that you do not need to create an amortization schedule, wrote "none required" on that tab. d. Create your journal entry for how to record the lease in the financial statements for the calendar year 2021. You are in the process of closing the period for July 2021. how to write an introduction paragraph for a persuasive essay An electron and a 0.0220kg bullet each have a velocity of magnitude 460 m/s, accurate to within 0.0100%. Within what lower limit could we determine the position of each object along the direction of the velocity? electron mm bullet m . What is the direction of the force on the middle charge +2q +q -39 1m 1m a) Left b) Right c) Up d) Down e) No Force Q) There are 5 vowels {a, e, i, o, u} in the 26 English letters. How many 4-letter strings are there:a. that contains a vowel?b. that starts with x, contain exactly 2 vowels and the 2 vowels are different.c. that contains both letter a and the letter b.Discrete Mathematics In the Northern hemispheres summer, Shiprock is tipped 23.5o further toward the Sun than usual. This means that on the longest day of the year (the summer solstice), the angle of the sunlight hitting Shiprock is only 13.3o. What is the relative intensity at this angle? All of the following are disconfirming messages except...a) interrupting the other personb) giving ambiguous responsesc) ignoring the other persond) using a problem-oriented approache) responding with clichs