Find the area of the figure

Find The Area Of The Figure

Answers

Answer 1
(9*13) + (.5(12*13)) = 195
Answer 2

Answer:

D. 195

Step-by-step explanation:

Find The Area Of The Figure

Related Questions

someone help me out please

Answers

Answer:

[tex]\displaystyle x=\frac{5}{4},\;\;1\frac{1}{4}, \;\; or \;\; 1.25[/tex]

Step-by-step explanation:

    To solve for x, we need to isolate the x variable.

    Given:

[tex]\displaystyle x+\frac{1}{2} =\frac{7}{4}[/tex]

    Subtract [tex]\frac{1}{2}[/tex] from both sides of the equation:

[tex]\displaystyle (x+\frac{1}{2})-\frac{1}{2} =(\frac{7}{4})-\frac{1}{2}[/tex]

[tex]\displaystyle x=\frac{7}{4}-\frac{1}{2}[/tex]

    Now, we will create common denominators to simplify.

[tex]\displaystyle x=\frac{7}{4}-\frac{2}{4}[/tex]

[tex]\displaystyle x=\frac{5}{4}[/tex]

How do I write a comment on the data following the completion of the box plot

Answers

We can comment that the maximum value of the given data is 0.2, maximum value is 42. The interquartile range is 15 to 37, first and third quartile values are 15 and 37 respectively. It can also be inferred from the box plot that there are no outliers. The median of the given data, as shown in the box plot, is 28.

What is a box plot?

A box and whisker plot, often known as a box plot, shows a data set's five-number summary. A box is drawn from the first quartile to the third quartile in a box plot. At the median, a vertical line passes through the box. The five-number summary of a box plot includes the following:

Minimum Value Maximum ValueFirst quartileThird quartileMedian

It also tells if there are any outliers in the data.

Learn more about a box plot here:

https://brainly.com/question/1523909

#SPJ1

Write the equation of the line in point slope form given the information below slope =-1/5 Y-intercept =-3

Answers

Answer:

y = 1/5x -3

Step-by-step explanation:

Use y = mx +b as your model.  We plug in our slope for me and our y-intercept for b.

Peanuts cost 6.40 per kg what is the cost of 400 g peanuts

Answers

Answer:

$25.60

Step-by-step explanation:

1 kg = 1000 grams

peanuts = 6.40 per kg = 0.064 per grams

0.064*400 = 25.6

The area of inner total surface of acubical water tank is 54m². How m3 many of water does it hold?​

Answers

Answer:

0

Step-by-step explanation:

54m² - 54m² = 0

Water is 0

Simplify.
√75
OA. 3√5
OB. 15√5
OC. 25√3
OD. 5√3

Answers

Answer:

Option D

Step-by-step explanation:

Using the surd law :

[tex]\sqrt{ab} = \sqrt{a}\sqrt{b}[/tex]

We can find the largest square number that goes into 75 :

Let's write the multiples of 75 :

1 , 75

3 , 25

5 , 15

The only square number is 25

So using the law mentioned above we split √75 into :

√25√3

The square root of 25 is 5

Now we have our final answer of 5√3

Hope this helped and have a good day

The simplified form of expression √75 is 5√3.

Option D is the correct answer.

We have,

To simplify √75, we can factor it into its prime factors and then take the square root:

√75 = √(3 * 5 * 5)

= √(3 x 5²)

Take out the perfect square factor from under the square root:

= √3 x √5²

= √3 x 5

= 5√3

Thus,

The simplified form of expression √75 is 5√3 which is option D.

Learn more about expressions here:

https://brainly.com/question/3118662

#SPJ7

For a population with = 100 and = 20, what is the x value corresponding to z = 1. 50?

Answers

The x value or observed value corresponding to  z-score, z = 1.50 is 130.

According to the question.

For a population with µ = 100 and σ = 20.

Since,  we know that

The z-score is a statistical evaluation of a value's correlation to the mean of a collection of values, expressed in terms of standard deviation.

And it is given by

z = (x - μ) / σ

Where,

x is the observed value.

μ is the mean.

and, σ is the standard deviation.

Therefore, the x value or observed value corresponding to z = 1.50 is given by

[tex]1.50 = \frac{x -100}{20}[/tex]

⇒ 1.50 × 20 = x - 100

⇒ 30 = x - 100

⇒ x = 30 + 100

⇒ x = 130

Hence, the x value or observed value corresponding to  z-score, z = 1.50 is 130.

Find out more information about observed value and z-score here:

https://brainly.com/question/27928620

#SPJ4

An airplane covers 3500 km in three hours. What would be the distance covered by the plane in 4.5 hours if it flies at the same constant speed. ( I need the proportion equation please help ASAP.)

Answers

Answer:

5,250 km

Step-by-step explanation:

[tex]\frac{hours}{miles}[/tex] = [tex]\frac{hours}{miles}[/tex]

[tex]\frac{3}{3500}[/tex] = [tex]\frac{4.5}{x}[/tex]  Cross Multiply

3x = (4.5)(3500)

3x = 15750 Divide both sides of the equation by 3

x = 5,250

A label on an empty sample container reads 10.000 g. You add in a sample of a compound and mass the sample container obtaining 13.54 g. What should the mass of the sample be reported as?

Answers

The mass of the sample should be reported as 3.54 g

The amount of matter in an object is expressed in terms of mass.

The most frequent way to determine mass is to weigh something.

The units of mass are grams, kilograms, tonnes (in metric units), or ounces and pounds (US units).

According to the question,

A label on an empty sample container reads 10.000 g

A sample of a compound is added and the mass of the sample container is found to be 13.54 g.

The mass of the sample should thus be reported as,

= 13.54 - 10.000

= 3.54 g

Learn more about mass here:

https://brainly.com/question/19385703

#SPJ1

To calculate the hourly revenue from the buffet after x $1 increases, multiply the price paid by each customer and the average number of customers per hour. Create an inequality in standard form that represents the restaurant owner’s desired revenue.

Type the correct answer in each box. Use numerals instead of words.

Answers

The inequality in the box has to be written as

x² + 2x - 80 ≤ - 65

How to solve the inequality

We have

(10 + x)1 * (16-2x) ≥ 130

Next we would have to open the bracket

160 + 16x - 20x - 2x² ≥ 130

Then we would have to arrange the equation

- 2x² - 4x + 160 ≥ 130

Divide the equation by two

- x² - 2x + 80 ≥ 65

This is arranged as

x² + 2x - 80 ≤ - 65

Read more on inequalities here:

https://brainly.com/question/24372553

#SPJ1

Which number belongs to the set of rational numbers and the set of integers?
F. –5.5 H. –0.5
G. – 115 J. –15

Answers

The number which belongs to the set of rational numbers and the set of integers is -115 which is third option,-15 which is fourth option.

Given four options:

–5.5 –0.5– 115 –15

We are required to find the number which is included in the set of rational numbers and the set of integers.

Rational numbers are those numbers which can be written in the form of p/q in which q cannot be equal to zero because if q becomes zero then the fraction becomes infinity.

-5.5 is not a rational number,

-0.5 is also not a rational number.

-115 is a rational number and also an integer.

-15 is a rationalnumber and also an integer.

Hence the number which belongs to the set of rational numbers and the set of integers is -115 which is third option,-15 which is fourth option.

Learn more about rational numbers at https://brainly.com/question/12088221

#SPJ1

Approximate the area under the
function between a and b using a
left-hand sum with the given
number of intervals.
f(x) = x³
a=0
b=3
3 Intervals

Answers

Split up the interval [0, 3] into 3 equally spaced subintervals of length [tex]\Delta x = \frac{3-0}3 = 1[/tex]. So we have the partition

[0, 1] U [1, 2] U [2, 3]

The left endpoint of the [tex]i[/tex]-th subinterval is

[tex]\ell_i = i - 1[/tex]

where [tex]i\in\{1,2,3\}[/tex].

Then the area is given by the definite integral and approximated by the left-hand Riemann sum

[tex]\displaystyle \int_0^3 f(x) \, dx \approx \sum_{i=1}^3 f(\ell_i) \Delta x \\\\ ~~~~~~~~~~ = \sum_{i=1}^3 (i-1)^3 \\\\ ~~~~~~~~~~ = \sum_{i=0}^2 i^3 \\\\ ~~~~~~~~~~ = 0^3 + 1^3 + 2^3 = \boxed{9}[/tex]

SOLVE 4x-6<-2
Help solve

Answers

The answer is x < 1.

Bring the constant to the other side.

4x - 6 < 24x < 4

Divide by 4 on both sides.

4x ÷ 4 < 4 ÷ 4x < 1

[tex]\Large\texttt{Answer}[/tex]

[tex]\overline{\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad\space\space\qquad\qquad\qquad}}[/tex]

[tex]\Large\texttt{Process}[/tex]

[tex]\rm{4x-6 < -2}[/tex]

Do you remember that we need to get x by itself to find its value?

We should do this:

⇨ Add 6 to both sides

[tex]\rm{4x-6+6 < -2+6}[/tex]

On the left hand side (lhs), the 6s add up to zero; on the right hand side (rhs), the -2 and 6 result in 4. Hence

[tex]\rm{4x < 4}[/tex]

Now divide both sides by 4

[tex]\rm{\cfrac{4x}{4} < \cfrac{4}{4}}[/tex]

Simplifying fractions gives us

[tex]\rm{x < 1}[/tex]

* what this means is: numbers less than 1 will make the statement true

[tex]\Large\texttt{Verification}[/tex]

Substitute 1 into the original inequality [tex]\boxed{4x-6 < -2}[/tex]

[tex]\rm{4(1)-6 < -2}[/tex]

[tex]\rm{4-6 < -2}[/tex]

Do the arithmetic

[tex]\rm{-2 < -2}[/tex]

Hope that helped

What is the step that comes after 3x(x+1)-5(x+1) when factoring by grouping?

Answers

Answer:

Separating the 3x and -5 apart from the (x+1)

Step-by-step explanation:

It would turn out to be (3x-5)(x+1) !

Factor out x+1 from the expression

(x+1) x (3x-5)

If tan theta = 2ab / a2-b2 then find all other trigonometric ratios ​

Answers

Answer:

[tex]\displaystyle{\sin \theta = \dfrac{2ab}{a^2+b^2}}\\\\\displaystyle{\cos \theta = \dfrac{a^2-b^2}{a^2+b^2}}\\\\\displaystyle{\csc \theta = \dfrac{a^2+b^2}{2ab}}\\\\\displaystyle{\sec \theta = \dfrac{a^2+b^2}{a^2-b^2}}\\\\\displaystyle{\cot \theta = \dfrac{a^2-b^2}{2ab}}[/tex]

Step-by-step explanation:

We are given that:

[tex]\displaystyle{\tan \theta = \dfrac{2ab}{a^2-b^2}}[/tex]

To find other trigonometric ratios, first, we have to know that there are total 6 trigonometric ratios:

[tex]\displaystyle{\sin \theta = \sf \dfrac{opposite}{hypotenuse} = \dfrac{y}{r}}\\\\\displaystyle{\cos \theta = \sf \dfrac{adjacent}{hypotenuse} = \dfrac{x}{r}}\\\\\displaystyle{\tan \theta = \sf \dfrac{opposite}{adjacent} = \dfrac{y}{x}}\\\\\displaystyle{\csc \theta = \sf \dfrac{hypotenuse}{opposite} = \dfrac{r}{y}}\\\\\displaystyle{\sec \theta = \sf \dfrac{hypotenuse}{adjacent} = \dfrac{r}{x}}\\\\\displaystyle{\cot \theta = \sf \dfrac{adjacent}{opposite} = \dfrac{x}{y}}[/tex]

Since we are given tangent relation, we know that [tex]\displaystyle{y = 2ab}[/tex] and [tex]\displaystyle{x = a^2-b^2}[/tex], all we have to do is to find hypotenuse or radius (r) which you can find by applying Pythagoras Theorem.

[tex]\displaystyle{r=\sqrt{x^2+y^2}}[/tex]

Therefore:

[tex]\displaystyle{r=\sqrt{(a^2-b^2)^2+(2ab)^2}}\\\\\displaystyle{r=\sqrt{a^4-2a^2b^2+b^4+4a^2b^2}}\\\\\displaystyle{r=\sqrt{a^4+2a^2b^2+b^4}}\\\\\displaystyle{r=\sqrt{(a^2+b^2)^2}}\\\\\displaystyle{r=a^2+b^2}[/tex]

Now we can find other trigonometric ratios by simply substituting the given information below:

[tex]\displaystyle{x = a^2-b^2}[/tex][tex]\displaystyle{y = 2ab}[/tex][tex]\displaystyle{r = a^2+b^2}[/tex]

Hence:

[tex]\displaystyle{\sin \theta = \dfrac{y}{r} = \dfrac{2ab}{a^2+b^2}}\\\\\displaystyle{\cos \theta = \dfrac{x}{r} = \dfrac{a^2-b^2}{a^2+b^2}}\\\\\displaystyle{\csc \theta = \dfrac{r}{y} = \dfrac{a^2+b^2}{2ab}}\\\\\displaystyle{\sec \theta = \dfrac{r}{x} = \dfrac{a^2+b^2}{a^2-b^2}}\\\\\displaystyle{\cot \theta = \dfrac{x}{y} = \dfrac{a^2-b^2}{2ab}}[/tex]

will be other trigonometric ratios.

Burger Barn makes a dipping sauce by mixing 4 spoonfuls of honey with 1 spoonful of mustard. Sandwich Town makes a dipping sauce by mixing 8 spoonfuls of honey with 2 spoonfuls of mustard

Which dipping sauce has a stronger mustard flavor?

Answers

The dipping sauce which has a stronger mustard flavor between burger barn and be sandwich town is burger barn

Ratio

Burger bun:

Honey = 4 spoonfulsMustard = 2 spoonfuls

Mustard : honey

= 2 : 4

= 2/4

= 1/2

= 0.5

Sandwich:

Honey = 8 spoonfulsMustard = 2 spoonfuls

Mustard : honey

= 2 : 8

= 2/8

= 1/4

= 0.25

Therefore, burger barn has a more stronger mustard flavor of dipping sauce between burger barn and be sandwich town.

Learn more about ratio:

https://brainly.com/question/2328454

#SPJ1

Answer:

Step-by-step explanation:

The two dipping sauce have same taste.

A random sample has 49 values. The sample mean is 8.5 and the sample standard deviation is 1.5. Use a level of significance of 0.01 to conduct a left-tailed test of the claim that the population mean is 9.2. Compute the sample test statistic t. 0.005 0.0005 -2.267 -3.267

Answers

No,the population mean is not equal to 9.2 and the value in t statistic is -1.02.

Given sample size of 49,sample mean of 8.5,standard deviation of 1.5, significance level of 0.01.

We are required to find out whether the population mean is equal to 9.2 and the value of t in test statistic.

We have to first make the hypothesis for this.

[tex]H_{0}[/tex]:μ≠9.2

[tex]H_{1}[/tex]:μ=9.2

We have to use z statistic because the sample size is more than 30.

Z=(X-μ)/σ

We have been given sample mean but we require population mean in the formula so we will use sample mean.

Z=(8.5-9.2)/1.5

=-0.7/1.5

=-0.467

P value of -0.467 is 0.67975.

P value is greater than 0.01 so we will accept the hypothesis means population mean is not equal to 9.2.

t=(X-μ)/s/[tex]\sqrt{n}[/tex]

=(8.5-9.2)/1.5/[tex]\sqrt{49}[/tex]

=-0.7/0.21

=-1.02

Hence it is concluded that no,the population mean is not equal to 9.2 and the value in t statistic is -1.02.

Learn more about t test at https://brainly.com/question/6589776

#SPJ1

Find the length of AN given the figure below:

Answers

Answer:

21

Step-by-step explanation:

In the diagram, the three tangents (segment touching a circle at one point) have equal length.

6y - 3 = 29 - 2y

8y = 32

y = 4


Since the lengths of segments AM and AN are equivalent, we can substitute the value of y into the expression, 6y - 3, to find AN.

6y - 3 = 6*4 - 3 = 24 - 3 = 21

Given AQRS-AXYZ, what is the value of tan(Q)?

A) 3/5
B) 3/4
C) 4/5
D) 4/3

Answers

The answer is B.

Since ΔQRS ~ ΔXYZ, the value of tan(Q) is :

∠Q = ∠Xtan(Q) = tan(X)tan(X) = 3/4tan(Q) = 3/4

Help me pleaseeeeeeeee

Answers

The value of the function g(-3) from the given piecewise function is 1

What are piecewise function?

A piecewise-defined function is a function defined by multiple sub-functions, where each sub-function applies to a different interval in the domain.

From the given piecewise function, we are to find the value of the function when x is -3 that is g(-3)

In order to determine the equivalent function, we need to determine the function where x = -3

The equivalent function is g(x) = x+ 4

Substitute x = -3 into the resulting function

g(x) = x + 4

g(-3) = -3 + 4

g(-3) = 1

Hence the value of the function g(-3) from the given piecewise function is 1

Learn more on piecewise function here: https://brainly.com/question/1848520

#SPJ1

Evaluate the integral, show all steps please!

Answers

Answer:

[tex]\dfrac{3}{2} \ln |x-4| - \dfrac{1}{2} \ln |x+2| + \text{C}[/tex]

Step-by-step explanation:

Fundamental Theorem of Calculus

[tex]\displaystyle \int \text{f}(x)\:\text{d}x=\text{F}(x)+\text{C} \iff \text{f}(x)=\dfrac{\text{d}}{\text{d}x}(\text{F}(x))[/tex]

If differentiating takes you from one function to another, then integrating the second function will take you back to the first with a constant of integration.

Given indefinite integral:

[tex]\displaystyle \int \dfrac{x+5}{(x-4)(x+2)}\:\:\text{d}x[/tex]

Take partial fractions of the given fraction by writing out the fraction as an identity:

[tex]\begin{aligned}\dfrac{x+5}{(x-4)(x+2)} & \equiv \dfrac{A}{x-4}+\dfrac{B}{x+2}\\\\\implies \dfrac{x+5}{(x-4)(x+2)} & \equiv \dfrac{A(x+2)}{(x-4)(x+2)}+\dfrac{B(x-4)}{(x-4)(x+2)}\\\\\implies x+5 & \equiv A(x+2)+B(x-4)\end{aligned}[/tex]

Calculate the values of A and B using substitution:

[tex]\textsf{when }x=4 \implies 9 = A(6)+B(0) \implies A=\dfrac{3}{2}[/tex]

[tex]\textsf{when }x=-2 \implies 3 = A(0)+B(-6) \implies B=-\dfrac{1}{2}[/tex]

Substitute the found values of A and B:

[tex]\displaystyle \int \dfrac{x+5}{(x-4)(x+2)}\:\:\text{d}x = \int \dfrac{3}{2(x-4)}-\dfrac{1}{2(x+2)}\:\:\text{d}x[/tex]

[tex]\boxed{\begin{minipage}{5 cm}\underline{Terms multiplied by constants}\\\\$\displaystyle \int ax^n\:\text{d}x=a \int x^n \:\text{d}x$\end{minipage}}[/tex]

If the terms are multiplied by constants, take them outside the integral:

[tex]\implies \displaystyle \dfrac{3}{2} \int \dfrac{1}{x-4}- \dfrac{1}{2} \int \dfrac{1}{x+2}\:\:\text{d}x[/tex]

[tex]\boxed{\begin{minipage}{5 cm}\underline{Integrating}\\\\$\displaystyle \int \dfrac{f'(x)}{f(x)}\:\text{d}x=\ln |f(x)| \:\:(+\text{C})$\end{minipage}}[/tex]

[tex]\implies \dfrac{3}{2} \ln |x-4| - \dfrac{1}{2} \ln |x+2| + \text{C}[/tex]

Learn more about integration here:

https://brainly.com/question/27805589

https://brainly.com/question/28155016

For an alternative approach, expand and complete the square in the denominator to write

[tex](x-4)(x+2) = x^2 - 2x - 8 = (x - 1)^2 - 9[/tex]

In the integral, substitute [tex]x - 1 = 3 \sin(u)[/tex] and [tex]dx=3\cos(u)\,du[/tex] to transform it to

[tex]\displaystyle \int \frac{x+5}{(x - 1)^2 - 9} \, dx = \int \frac{3\sin(u) + 6}{9 \sin^2(u) - 9} 3\cos(u) \, du \\\\ ~~~~~~~~~~~~ = - \int \frac{\sin(u) + 2}{\cos(u)} \, du \\\\ ~~~~~~~~~~~~ = - \int (\tan(u) + 2 \sec(u)) \, du[/tex]

Using the known antiderivatives

[tex]\displaystyle \int \tan(x) \, dx = - \ln|\cos(x)| + C[/tex]

[tex]\displaystyle \int \sec(x) \, dx = \ln|\sec(x) + \tan(x)| + C[/tex]

we get

[tex]\displaystyle \int \frac{x+5}{(x - 1)^2 - 9} \, dx = \ln|\cos(u)| - 2 \ln|\sec(u) + \tan(u)| + C \\\\ ~~~~~~~~~~~~ = - \ln\left|\frac{(\sec(u) + \tan(u))^2}{\cos(u)}\right|[/tex]

Now, for [tex]n\in\Bbb Z[/tex],

[tex]\sin(u) = \dfrac{x-1}3 \implies u = \sin^{-1}\left(\dfrac{x-1}3\right) + 2n\pi[/tex]

so that

[tex]\cos(u) = \sqrt{1 - \dfrac{(x-1)^2}9} = \dfrac{\sqrt{-(x-4)(x+2)}}3 \implies \sec(u) = \dfrac3{\sqrt{-(x-4)(x+2)}}[/tex]

and

[tex]\tan(u) = \dfrac{\sin(u)}{\cos(u)} = -\dfrac{x-1}{\sqrt{-(x-4)(x+2)}}[/tex]

Then the antiderivative we found is equivalent to

[tex]\displaystyle - \int \frac{x+5}{(x - 1)^2 - 9} \, dx = - \ln\left|-\frac{3(x+2)}{(x-4) \sqrt{-(x-4)(x+2)}}\right| + C[/tex]

and can be expanded as

[tex]\displaystyle - \int \frac{x+5}{(x - 1)^2 - 9} \, dx = -\ln\left| \frac{3(x+2)^{1/2}}{(x-4)^{3/2}}\right| + C \\\\ ~~~~~~~~~~~~ = - \ln\left|(x+2)^{1/2}\right| + \ln\left|(x-4)^{3/2}\right| + C \\\\ ~~~~~~~~~~~~ = \boxed{\frac32 \ln|x-4| - \frac12 \ln|x+2| + C}[/tex]

Use the figure to the right to find the value of PT. T is the midpoint of PQ
PT=3x+3 TQ=7x-9

Answers

If T is the midpoint of PQ and PT = 3x+3, TQ = 7x-9, then PT = 12 units.

Determining the Value of PT

It is given that,

T is the midpoint of PQ ........ (1)

PT=3x+3 ......... (2)

TQ=7x-9 .......... (3)

From (1), the distance from P to T and the distance from T to Q will be equal.

⇒ PT = TQ [Since, a midpoint divides a line into two equal segments]

Hence, equating the equations of PT and TQ given in (2) and (3) respectively, equal, we get the following,

3x + 3 = 7x - 9

or 7x - 9 = 3x + 3

or 7x - 3x = 9 + 3

or 4x = 12

or x = 12/4

⇒ x = 3

Substitute this obtained value of x in equation (2)

PT = 3(3) + 3

PT = 9 + 3

PT = 12 units

Thus, if T is the midpoint of PQ, then the measure of PT and TQ is equal to 12 units.

Learn more about midpoint here:

https://brainly.com/question/5127660

#SPJ1

PLEASE HELP, I REALLY NEED IT!!!

Answers

The number which is express in each of the models as given in the image attached to the task content are as follows;

a). 1.37

b). 1.37

c). 1.37.

What numbers are expressed according to the given models in the task content?

It follows from the task content that the models describe that One flat represents 1 whole, One rod represents 1 tenth and one unit represents 1 hundredth.

It therefore follows from the task content that in each of the models, the algebraic sum of flat(s), rods and units as the case may be results in the value; 1.37 as the utmost number represented by the models.

Read more on place values;

https://brainly.com/question/2041524

#SPJ1

How many nonzero terms of the maclaurin series for ln(1 x) do you need to use to estimate ln(1. 4) to within 0. 0001?

Answers

We need at least 7 terms of the Maclaurin series for ln(1 + x)  to estimate ln 1.4 to within 0.0001

For given question,

We have been given a function f(x) = ln(1 + x)

We need to find  the estimate of In(1.4) within 0.001 by applying the function of the Maclaurin series for f(x) = In (1 + x)

The expansion of ln(1 + x) about zero is:

[tex]ln(1+x)=x-\frac{x^2}{2} + \frac{x^3}{3} -\frac{x^4}{4} +\frac{x^5}{5} -\frac{x^6}{6} +.~.~.[/tex]

where -1 ≤ x ≤ 1

To estimate the value of In(1.4), let's replace x with 0.4

[tex]\Rightarrow ln(1+0.4)=0.4-\frac{0.4^2}{2} + \frac{0.4^3}{3} -\frac{0.4^4}{4} +\frac{0.4^5}{5} -\frac{0.4^6}{6} +.~.~.[/tex]

From the above calculations, we will realize that the value of  [tex]\frac{0.4^5}{5}=0.002048[/tex] and [tex]\frac{0.4^6}{6}=0.000683[/tex]  which are approximately equal to 0.001

Hence, the estimate of In(1.4) to the term [tex]\frac{0.4^6}{6}[/tex]  is enough to justify our claim.

Therefore,  we need at least 7 terms of the Maclaurin series for function ln(1 + x)  to estimate ln 1.4 to within 0.0001

Learn more about the Maclaurin series here:

https://brainly.com/question/16523296

#SPJ4

PLEASE I NEED HELP PLEASE

Answers

Answer:

i'll give you answer.Dont worry. Since i came back from school

A triangular garden is to be split so that the angle at vertex B is bisected. This diagram was supplied by the landscape architect, but you do not have a way to measure the angles at B. You do have the given side lengths, so what is the length of side that will allow the angle at B to be bisected?

A diagram shows a triangle ABC. BD is a line drawn to the base AC. The length of AB is 5 m, BC is 7 m, AD is x m, DC is 4 m, and AC is 12 m.

Answers

The AD's length of 3m will enable the angle at B to be divided in half.

Angle Bisector Theorem: What is it?

The angle bisector of a triangle divides the opposing side into two portions that are proportional to the other two sides, according to the angle bisector theorem, in simpler words the angle bisector theorem is concerned with the relative lengths of the two segments that a triangle's side is divided into by a line that bisects the opposite angle. It equates their relative lengths to the relative lengths of the other two sides of the triangle.

The triangle has sides of 5, 7, and (x+4) m.

Angle B's angle bisector will only be the BD if

x/4 = 5/7

x = 5 *4 / 7

x = 20/7 = 2.85 ≈ 3m

Thus if AD has length of 3m then it will enable the angle at B to be divided in half.

Learn more about Angle Bisector Theorem  here :

https://brainly.com/question/26036278

#SPJ1

Answer:

AD = 3m

Hope this helps!

Step-by-step explanation:

The total mass of 2 similar clay pots and 2 similar metal pots was 13.2 kg. The mass of 1 such clay pot was 3 times the mass of a metal pot. What was the mass of a clay pot?​

Answers

Answer:

mass of a clay pot = 4.95 kg

Kindly award branliest

Step-by-step explanation:

Let the mass of a clay pot be x

Let the mass of a metal pot be y

Thus; 2x + 2y = 13.2

And ;

x = 3 times y

x = 3y

2x + 2y = 13.2

2(3y) + 2y = 13.2

6y + 2y = 13.2

8y = 13.2

y = 13.2/8 = 1.65

x = 3y = 3(1.65) = 4.95

mass of a clay pot = 4.95 kg

Let f(x) = [infinity] xn n2 n = 1. find the intervals of convergence for f. (enter your answers using interval notation. ) find the intervals of convergence for f '. find the intervals of convergence for f ''

Answers

Best guess for the function is

[tex]\displaystyle f(x) = \sum_{n=1}^\infty \frac{x^n}{n^2}[/tex]

By the ratio test, the series converges for

[tex]\displaystyle \lim_{n\to\infty} \left|\frac{x^{n+1}}{(n+1)^2} \cdot \frac{n^2}{x^n}\right| = |x| \lim_{n\to\infty} \frac{n^2}{(n+1)^2} = |x| < 1[/tex]

When [tex]x=1[/tex], [tex]f(x)[/tex] is a convergent [tex]p[/tex]-series.

When [tex]x=-1[/tex], [tex]f(x)[/tex] is a convergent alternating series.

So, the interval of convergence for [tex]f(x)[/tex] is the closed interval [tex]\boxed{-1 \le x \le 1}[/tex].

The derivative of [tex]f[/tex] is the series

[tex]\displaystyle f'(x) = \sum_{n=1}^\infty \frac{nx^{n-1}}{n^2} = \frac1x \sum_{n=1}^\infty \frac{x^n}n[/tex]

which also converges for [tex]|x|<1[/tex] by the ratio test:

[tex]\displaystyle \lim_{n\to\infty} \left|\frac{x^{n+1}}{n+1} \cdot \frac n{x^n}\right| = |x| \lim_{n\to\infty} \frac{n}{n+1} = |x| < 1[/tex]

When [tex]x=1[/tex], [tex]f'(x)[/tex] becomes the divergent harmonic series.

When [tex]x=-1[/tex], [tex]f'(x)[/tex] is a convergent alternating series.

The interval of convergence for [tex]f'(x)[/tex] is then the closed-open interval [tex]\boxed{-1 \le x < 1}[/tex].

Differentiating [tex]f[/tex] once more gives the series

[tex]\displaystyle f''(x) = \sum_{n=1}^\infty \frac{n(n-1)x^{n-2}}{n^2} = \frac1{x^2} \sum_{n=1}^\infty \frac{(n-1)x^n}{n} = \frac1{x^2} \left(\sum_{n=1}^\infty x^n - \sum_{n=1}^\infty \frac{x^n}n\right)[/tex]

The first series is geometric and converges for [tex]|x|<1[/tex], endpoints not included.

The second series is [tex]f'(x)[/tex], which we know converges for [tex]-1\le x<1[/tex].

Putting these intervals together, we see that [tex]f''(x)[/tex] converges only on the open interval [tex]\boxed{-1 < x < 1}[/tex].

If a sample of n = 4 scores is obtained from a normal population with µ = 70 and σ = 12. What is the z-score corresponding to a sample mean of m = 69?

Answers

The z-score corresponding to a sample mean of m = 69 is -0.167

In this problem, we have been given :

population mean (μ) = 70, standard deviation (σ) = 12,  sample size (n) = 4, sample mean (m) = 69

We know that, the Z-score measures how many standard deviations the measure is from the mean.

Also, the formula when calculating the z-score of a sample with known population standard deviation is:

[tex]Z=\frac{m-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex]

where z = standard score

μ = population mean

σ = population standard deviation

m = the sample mean

and [tex]\frac{\sigma}{\sqrt{n} }[/tex] is the Standard Error of the Mean for a Population

First we find the Standard Error of the Mean for a Population

σ /√n

= 12 / √4

= 12 / 2

= 6

So, the z-score would be,

⇒ [tex]Z=\frac{m-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex]

⇒ [tex]Z=\frac{69-70}{6 }[/tex]

⇒ Z = -1/6

⇒ Z = -0.167

Therefore, the z-score corresponding to a sample mean of m = 69 is -0.167

Learn more about the z-score here:

https://brainly.com/question/14103836

#SPJ4

1. If x = 1 and y = 7, evaluate x+y/4 ​

Answers

Answer:

2

Step-by-step explanation:

given x=1 and y=7

now, given expression ,

x+y/4

by putting the values of the x and y ,we get

x+y/4

= 1+7/4

= 8/4

= 2 (Ans.)

Other Questions
what is social security The elements of group IA have been termed alkali metals because of their ___ alkaline. The nonshared environment in studies of personality refers to differences in ________. A school dance committee has 14 volunteers. Each dance requires 3 volunteers at the door, 5 volunteers on the floor, and 6 floaters. If two of the volunteers, Christine and Samuel, cannot work together since they are new, in in how many ways can the volunteers be assigned? Which of the following are considered to bepart of the study of chemistry?SELECT ALL THAT APPLYaproperties of matterb changes to matterCinteractions between living thingsd composition of matter Which power of Congress is the most important?Select one:O a. the authority to regulate commerceO b. the authority to establish the federal courts.O c. the authority to make lawsO d. the authority to coin money A major purpose of the federal sentencing guidelines for organizations, the sarbanes-oxley act, and the dodd-frank act is to:_______. Beryl company sells flash drives per week. purchaseorder lead time is weeks and the economicorder quantity is units. what is the reorder point? Jim is a manager in a retail business. to be an effective manager and active leader, jim should try to have how many people as direct reports? What are porter's four competitive strategies? a) vertical integration b) related diversification c) focused-differentiation d) cost-leadership e) cost-focus differentiation How is increased muscle perfusion during exercise accomplished? check all that apply Solid rock is an unlevered firm with an ebit of $10 million and an unlevered cost of capital of 12 percent. if the tax rate is 40 percent, what is the value of the firm? How many different 2-digit numbers are there with the following property:the tenth digit is greater than the units digit? perform the following operation and express the answer in scientific notation 9.80x10^-3 + 1.60 x 10^-4 A firm that is threatened by the potential entry of competitors into a market builds excess production capacity. this is an example of__________? The purpose of statistical inference is to make estimates or draw conclusions about a. How could a man be severely injured beig hut by some tomatoes? Determine the unknown length or angle measurement. Round each answer to the nearest whole number. Beginning around 1908, schoenberg began to write ______ music, or music without a key. The data in the table represents the volume of helium, in cubic feet, inside a balloon relative to the elapsed time in minutes. What does the slope of the linear equation that models the data indicate?