Ampere's law, stated in its integral form, relates the magnetic field around a closed loop to the electric current passing through the loop. It states that the line integral of the magnetic field around a closed loop is proportional to the total current passing through the loop.
This law is used to calculate the magnetic field produced by current-carrying wires or other current distributions. The phenomenon you described, where the coils of a loose spiral spring move farther apart when a current is passed through it, is not related to Ampere's law. It seems to be an effect of electromagnetic forces between the current-carrying wire and the magnetic field it produces.
When a current passes through a wire, it generates a magnetic field around it. The interaction between the magnetic field produced by the wire and the current itself can result in a repulsive or attractive force between different sections of the wire, causing them to move. This effect is commonly observed in solenoids, where an increase in current leads to an expansion of the coil.
To know more about electric current visit:
https://brainly.com/question/29766827
#SPJ11
which of the following is not true about integrated circuits
The statement that is not true about integrated circuits is Invented in 1961. The first functional integrated circuit was demonstrated in 1958 after which integrated circuit development commenced in the late 1950s. Therefore, option A is correct.
Integrated circuits (ICs) are electronic devices that consist of multiple electronic components, such as transistors, resistors, and capacitors, fabricated onto a single semiconductor substrate. They revolutionized the field of electronics by enabling miniaturization, increased functionality, and improved performance of electronic systems.
Option B, stating that ICs are 1/4 square inches in size, is a generalization and not universally true. The size of integrated circuits can vary significantly depending on their complexity and intended application. While some ICs may indeed be small enough to fit within a 1/4 square inch area, others can be larger or much smaller.
Option C, mentioning that ICs contain thousands of transistors, is true. Integrated circuits are designed to incorporate a large number of transistors, which are the fundamental building blocks of electronic circuits. The number of transistors on an IC can range from a few hundred to billions, depending on the complexity and scale of the circuit.
In conclusion, the false statement about integrated circuits is that they were invented in 1961. The development of integrated circuits began in the late 1950s, and the first working integrated circuit was demonstrated in 1958.
However, the widespread commercialization and adoption of integrated circuits occurred in subsequent years, leading to their significant impact on various industries and technologies. Therefore, option A is correct.
To know more about integrated circuits refer here:
https://brainly.com/question/33453751#
#SPJ11
Complete Question:
Which of the following is not true about integrated circuits?
A.invented in 1961
B. 1/4 square inches in size
C. contains thousands of transistor
D. all
What is the apparent weight of 125 cm3 of steel submerged in
water? ANS: 8.4 N
When an object is submerged in water, the apparent weight is less than its actual weight due to the buoyant force. To determine the apparent weight of 125 cm³ of steel submerged in water, we will need to use the formula for buoyant force.
Buoyant force = Weight of water displaced by the object
We know the volume of the steel is 125 cm³. Since 1 cm³ of water has a mass of 1 gram and the density of steel is 7.8 g/cm³, we can calculate the mass of the steel:
mass of steel = volume of steel × density of steel= 125 cm³ × 7.8 g/cm³= 975 g
To determine the weight of water displaced by the steel, we need to know the volume of water displaced.
This is equal to the volume of the steel:
volume of water displaced = volume of steel = 125 cm³
The weight of water displaced is equal to the weight of this volume of water, which we can calculate using the density of water and the volume of water displaced:
weight of water displaced = volume of water displaced × density of water= 125 cm³ × 1 g/cm³= 125 g
Now we can calculate the buoyant force acting on the steel:
Buoyant force = Weight of water displaced by the object= 125 g × 9.81 m/s²= 1.23 N
The apparent weight of the steel submerged in water is equal to the actual weight minus the buoyant force:
Apparent weight = Actual weight - Buoyant force
Actual weight = mass of steel × gravitational acceleration= 975 g × 9.81 m/s²= 9.57 N
Apparent weight = 9.57 N - 1.23 N = 8.34 N
Therefore, the apparent weight of 125 cm³ of steel submerged in water is 8.34 N (to two decimal places).
To know more about buoyant force visit:
https://brainly.com/question/20165763
#SPJ11
Electromagnetio radiation is emitied by accoleratng Part A charges. The rale at which ereegy is emined from an accelsating chargn that has charged and. acceleration a is given by d4x=6 crep 231a2 where c when fraction of tis energy does trad ale ber second? is the spend of light.
The rate at which energy is emitted from an accelerating charged particle is given by the formula dE/dt = (2/3) (e^2/4πε₀c³) a², where e is the charge of the particle and a is its acceleration. The expression (2/3) (e^2/4πε₀c³) represents a constant factor. The energy emitted per second is directly proportional to the square of the acceleration of the charged particle.
The rate at which energy is emitted from an accelerating charged particle can be derived from the theory of classical electrodynamics. The formula dE/dt = (2/3) (e^2/4πε₀c³) a² represents the power radiated by the charged particle. Here, e is the charge of the particle, a is its acceleration, ε₀ is the permittivity of free space, and c is the speed of light.
The expression (2/3) (e^2/4πε₀c³) represents a constant factor that depends on the properties of the particle and the medium in which it is accelerating. The energy emitted per second, or the power, is directly proportional to the square of the acceleration of the charged particle.
Therefore, the rate at which energy is emitted from an accelerating charged particle is determined by the square of its acceleration, and the constant factor (2/3) (e^2/4πε₀c³) represents the proportionality between the power and the acceleration.
To know more about acceleration click here:
https://brainly.com/question/2303856
#SPJ11
The absolute pressure of an ideal gas in a bike tire is 1.5 atm Atre gauge is used to measare thim pressure in the tie What prestulf does hie gaine read A. 2.5 atm B. 5 atm 1.5 atm 3 atm E 0.5 atm
The pressure reading on the gauge would be 2.5 atm calculated by subtracting the atmospheric pressure from the absolute pressure. So, the correct answer is option A. 2.5 atm.
Explanation:
Gauge pressure is the pressure measured relative to atmospheric pressure. In this case, the absolute pressure inside the bike tire is given as 1.5 atm. Since the atmospheric pressure is typically around 1 atm, the gauge pressure can be calculated by subtracting the atmospheric pressure from the absolute pressure.
Absolute pressure = Gauge pressure + Atmospheric pressure
Absolute pressure = 1.5 atm + 1 atm
Absolute pressure = 2.5 atm
Therefore, the pressure reading on the gauge would be 2.5 atm.
So, the correct answer is option A. 2.5 atm.
Learn more about pressure
https://brainly.com/question/28012687
#SPJ11
Which of the following takes place when a transverse pulse wave traveling down a string is reflected off of a fixed end of a string? harmonics overtones phase reversal no phase reversal
When a transverse pulse wave traveling down a string is reflected off of a fixed end of a string, a phase reversal occurs. The reflected wave is inverted when it comes back.
This means that the crests of the wave become troughs and the troughs become crests.
A transverse wave on a string is where the particles of the medium (string) vibrate perpendicular to the direction the wave is traveling. The reflection of a wave can occur when a wave encounters a new medium and changes direction, such as when light reflects off a mirror.
When a wave reflects off of a fixed end of a string, the wave is reversed and reflected back along the same string. This is called a fixed boundary condition.
There are two different types of boundary conditions.
A fixed boundary is when the string is anchored at both ends, and the ends of the string can’t move up and down.
When the pulse wave hits this fixed boundary, it will bounce back with a phase reversal, meaning that the wave will be inverted and will return to its original direction of travel with a reflected wave.
To know more about traveling visit :
https://brainly.com/question/18090388
#SPJ11
A phase reversal occurs when a transverse pulse wave reflects off a fixed end of a string, causing the wave to reflect back along the string in opposite direction while inverting its wave disturbance pattern.
Explanation:When a transverse pulse wave traveling down a string reflects off a fixed end, a phase reversal takes place. This is a 180° change in phase with respect to the incident wave, as opposed to no phase change occurring when reflecting off a free end. During a phase reversal, the incident pulse or wave that travels down the string reflects back along the string in the opposite direction, with an inversion in its wave disturbance pattern. Nodes, where the wave disturbance is zero, appear at the fixed ends where the string is immobile. This phenomenon, where standing waves are created due to reflections of waves from the ends of the string, is common in stringed musical instruments, where the wave reflection is regulated by the boundary conditions of the system.
Learn more about Phase Reversal here:https://brainly.com/question/33517325
#SPJ12
The phase difference between two identical sinusoidal waves propagating in the same direction is tt rad. If these two waves are interfering, what would be the nature of their interference? Operfectly destructive O partially constructive partially destructive O None of the listed choices. perfectly constructive
The phase difference between two identical sinusoidal waves propagating in the same direction is tt rad (where tt represents a specific angle in radians).
The nature of interference between these waves depends on the specific value of the phase difference. If the phase difference is an odd multiple of π (pi) radians (such as π, 3π, 5π, etc.), the interference is perfectly destructive. In this case, the peaks of one wave coincide with the troughs of the other wave, resulting in complete cancellation or destructive interference.
If the phase difference is an even multiple of π (pi) radians (such as 0, 2π, 4π, etc.), the interference is perfectly constructive. In this case, the peaks of one wave coincide with the peaks of the other wave, resulting in reinforcement or constructive interference. If the phase difference is any other value, the interference will be a combination of constructive and destructive interference, leading to partially constructive and partially destructive interference.
Therefore, the correct answer from the listed choices would be: Partially constructive, partially destructive.
To learn more about sinusoidal waves follow:
https://brainly.com/question/33443431
#SPJ11
An object has a circular path with radius 8.00 cm. The angular velocity of the object is 150
rad/s. Determine (a) tangential velocity and (b) centripetal force.
Therefore, the tangential velocity of the object is 12 m/s and the centripetal force acting on the object is 22500 N
To determine the tangential velocity and centripetal force of an object moving in a circular path, we can use the following formulas:
(a) Tangential velocity (v):
v = r * ω
where r is the radius of the circular path and ω is the angular velocity.
(b) Centripetal force (F):
F = m * a = m * ([tex]v^2[/tex] / r)
where m is the mass of the object, v is the tangential velocity, and a is the centripetal acceleration.
Radius, r = 8.00 cm = 0.08 m
Angular velocity, ω = 150 rad/s
(a) Tangential velocity:
v = r * ω
v = 0.08 m * 150 rad/s
Calculate the value:
v = 12 m/s
(b) Centripetal force:
F = m * ([tex]v^2[/tex] / r)
F = m * (12 [tex]m/s)^2[/tex] / 0.08 m
Simplify the equation and substitute the appropriate values:
F = m * 1800 [tex]m^2/s^2[/tex] / 0.08 m
Calculate the value:
F = m * 22500 N.
To know more about centripetal force refer to-
https://brainly.com/question/14021112
#SPJ11
A charge of -e is situated at the origin of an x-axis, a second charge of -5 e exists 4 mm to the left of the origin, and a third charge of +4 e is situated 4 μm to the right of the origin. Determine the total force on the left-most charge. F⃗ = __________ N
A charge of -e is situated at the origin of an x-axis, a second charge of -5 e exists 4 mm to the left of the origin, and a third charge of +4 e is situated 4 μm to the right of the origin.
Formula: Coloumb's Law
F = Kq1q2/r2
Where,K = Coulombs constant
K= 9 × [tex]10^9[/tex] N [tex]m^2[/tex]/[tex]C^2[/tex]
q1, q2 are the chargesr is the distance between the charges The force on the left-most charge (q1) due to the other charges (q2, q3) can be calculated by the following steps:Since the charges q1 and q2 are of the same sign, the force on q1 due to q2 will be repulsive.
F12 = Kq1q2/r
[tex]12^2[/tex] = 9 × [tex]10^9[/tex] × (-e) × (-5e)/(4 ×[tex])^2[/tex]
[tex]12^2[/tex] = 1.125 × [tex]10^{-2}[/tex] N
Since the charges q1 and q3 are of opposite sign, the force on q1 due to q3 will be attractive. F13 = Kq1q3/r
[tex]13^2[/tex] = 9 × [tex]10^9[/tex] × (-e) × (+4e)/(4 × [tex]10^{-6})^2[/tex] = 9 × [tex]10^{-2}[/tex] N
Therefore, the net force on q1 is given by the vector sum of the individual forces: F1 = F12 + F13
F1 = -1.0125 × [tex]10^{-1}[/tex] N (to the left)
So,
F⃗ = -1.0125 × [tex]10^{-1}[/tex] N.
To know more about origin visit:
https://brainly.com/question/31317185
#SPJ11
If a 221.7-kg weight attached to a paddle wheel in oil falls from rest to 3.000 m/s and the work of the falling weight is transferred to the water [use water's specific heat =4182 J/(kgK) ] with nearly no loss to other forms of energy, how many kelvin of temperature does the work done by the fall raise 1.5 kg of water?
The work done by the fall raises the temperature of 1.5 kg of water by approximately 0.15 K.
To determine the temperature increase caused by the work done by the falling weight on the water, we need to calculate the amount of thermal energy transferred to the water. The thermal energy transferred can be calculated using the equation:
Q = mcΔT
where Q is the thermal energy transferred, m is the mass of water, c is the specific heat capacity of water, and ΔT is the temperature change.
Given:
Mass of water (m) = 1.5 kg
Specific heat capacity of water (c) = 4182 J/(kg·K)
To calculate the thermal energy transferred, we need to determine the work done by the falling weight. The work done is given by the equation:
W = ΔKE
where W is the work done, and ΔKE is the change in kinetic energy of the weight.
The change in kinetic energy can be calculated using the equation:
ΔKE = 0.5m[tex]v^{2}[/tex]
where m is the mass of the weight and v is its velocity.
Given:
Mass of weight (m) = 221.7 kg
Initial velocity (v₁) = 0 m/s
Final velocity (v₂) = 3.000 m/s
Calculating the change in kinetic energy:
ΔKE = 0.5 * 221.7 kg * (3.000 m/[tex]s^{2}[/tex])
Calculating the result:
ΔKE = 997.65 J
Now, we can calculate the thermal energy transferred to the water:
Q = mcΔT
Rearranging the equation to solve for ΔT:
ΔT = Q / (mc)
Substituting the known values:
ΔT = 997.65 J / (1.5 kg * 4182 J/(kg·K))
Calculating the result:
ΔT ≈ 0.15 K
Therefore, the work done by the fall raises the temperature of 1.5 kg of water by approximately 0.15 K.
Learn more about thermal energy here:
https://brainly.com/question/11278589
#SPJ11
dancer moves in one dimension back and forth across the stage. If the end of the stage nearest to her is considered to be the origin of an x axis that uns parallel to the stage, her position, as a function of time, is given by
x
(t)=[(0.02 m/s
3
)t
3
−(0.36 m/s
2
)t
2
+(1.98 m/s)t−2.16 m
i
^
(a) Find an expression for the dancer's velocity as a function of time. (Assume SI units. Do not include units in your answer. Use the following necessary: t.)
v
(t)=
i
^
(b) Graph the velocity as a function of time for the 14 s over which the dancer performs (the dancer begins when t=0 ) and use the graph to determine when the dancer's velocity is equal to 0 m/s. (Submit a file with a maximum size of 1MB.) No file chosen
Velocity is the derivative of displacement in calculus.
The velocity of the dancer is given by:v (t) = dx/dt Differentiating the given displacement function with respect to time (t),
we get:[tex]v (t) = [(0.02 m/s^3) * 3t^2 - (0.36 m/s^2) * 2t + 1.98 m/s] * i^ = (0.06t^2 - 0.72t + 1.98) * i^(b)[/tex]
To plot the graph of velocity as a function of time for the 14 s, we can use the obtained expression of velocity.
The graph of velocity versus time is shown below:
The velocity of the dancer is equal to 0 [tex]m/s at t = 1.2 s and t = 5.6 s[/tex]approximately.
To know more about displacement visit:
https://brainly.com/question/11934397
#SPJ11
A 789 kg car starts from rest and accelerates uniformly over a time of 5 seconds for a distance of 450 km. Determine the force exerted by the car.
The force exerted by the car is approximately 28,404,000 Newtons. This force is responsible for the acceleration of the car during the 5-second time interval and the distance traveled.
To determine the force exerted by the car, we can use Newton's second law of motion, which states that the force acting on an object is equal to the mass of the object multiplied by its acceleration:
Force = mass * acceleration
Given that the car has a mass of 789 kg, we need to find the acceleration it undergoes. To calculate the acceleration, we can use the equation of motion:
distance = (1/2) * acceleration * time^2
In this case, the distance is 450 km, which is 450,000 meters, and the time is 5 seconds. Rearranging the equation, we can solve for acceleration:
acceleration = (2 * distance) / (time^2)
Substituting the given values:
acceleration = (2 * 450,000 m) / (5 s)^2
= 36,000 m/s^2
Now that we have the acceleration, we can calculate the force exerted by the car:
Force = mass * acceleration
= 789 kg * 36,000 m/s^2
= 28,404,000 N
Therefore, the force exerted by the car is approximately 28,404,000 Newtons. This force is responsible for the acceleration of the car during the 5-second time interval and the distance traveled.
Learn more about force here:
https://brainly.com/question/13191643
#SPJ11
Use physical standards used to develop the Celsius and Fahrenheit temperature scales. Now, come up with a new temperature scale that is based on different physical standards. Be as imaginative as possible.
The Celsius and Fahrenheit temperature scales were both established using the properties of substances under specific conditions.
One of the physical standards that was used to develop the Celsius temperature scale is the melting point of ice (0°C) and boiling point of water (100°C) under atmospheric pressure.
On the other hand, the Fahrenheit temperature scale was established using a mixture of water, salt, and ice that resulted in a temperature of 0°F, and the human body temperature was used as a reference point for 98.6°F.
Now, let's create a new temperature scale based on different physical standards. We can call it the Quantum temperature scale, which uses the properties of an atom as a reference point.
The idea is to make use of the atomic resonance frequency, which is the frequency at which an atom will absorb a photon of light. Each atom has a unique resonance frequency that corresponds to a specific temperature.
Let's use the hydrogen atom as an example. The hydrogen atom has a resonance frequency of 1.42 GHz at a temperature of 0K (Kelvin).
The Quantum temperature scale would use this frequency as its reference point. As the temperature increases, the resonance frequency of the hydrogen atom will shift, and the scale would be calibrated accordingly.
For example, at 100K, the resonance frequency of the hydrogen atom would be 1.44 GHz. Therefore, 100K would be equivalent to 1.44 GHz on the Quantum temperature scale.
The Quantum temperature scale would be an imaginative and precise way of measuring temperature, as it would not be based on human reference points or the properties of substances but rather the unique properties of atoms.
To learn more about celsius follow the given link
https://brainly.com/question/30391112
#SPJ11
How many 40μF capacitors must be connected in parallel to store a charge of 1C with a potential of 100 V across the capacitors? 1. 1000 2. 625 3. 0500 4. 0400 5. 0250
The formula that relates capacitance (C), charge (Q), and potential difference (V) is Q = CV. Here, we need to find out how many 40μF capacitors must be connected in parallel to store a charge of 1C with a potential of 100 V across the capacitors.
We can find out the number of capacitors required using the formula:Q = CVQ = 1C, V = 100V, and C = 40μFThe formula is:
Q = CV=> C = Q/V=> 40μF = 1C/100V=> C = 0.01F
Now,
we can find the number of capacitors required using the formula:
N = Ceq/C, where Ceq is the equivalent capacitance.N = number of capacitors required C = capacitance of each capacitor Ceq = Q/VN = Ceq/C => N = (Q/V)/C => N = (1C/100V)/(40μF)=> N = 250Hence, 250 capacitors are needed to store a charge of 1C with a potential of 100 V across the capacitors. Therefore, the correct option is 5. 0250.
To know more about potential visit:
https://brainly.com/question/28300184
#SPJ11
an object moves along the x axis according to the
equation x(t) = t^3 - 5t^2 +5 where x in m and t in s, the
acceleration of the object at t = 1s in m/s^2 is
The acceleration of the object at t = 1s is -4 m/s^2. To find the acceleration of the object at t = 1s, we need to determine the second derivative of the position equation with respect to time.
Let's start by finding the first derivative:
v(t) = d/dt [x(t)] = d/dt [t^3 - 5t^2 + 5].
Differentiating each term separately, w have:
v(t) = 3t^2 - 10t.
Now, to find the acceleration, we take the derivative of the velocity equation:
a(t) = d/dt [v(t)] = d/dt [3t^2 - 10t].
Differentiating each term, we get:
a(t) = 6t - 10.
Now, to find the acceleration at t = 1s, we substitute t = 1 into the acceleration equation:
a(1) = 6(1) - 10 = 6 - 10 = -4 m/s^2.
Therefore, the acceleration of the object at t = 1s is -4 m/s^2.
To learn more about kinematics and derivatives, click here:-
brainly.com/question/19567921
#SPJ11
explain why the electrical charge on an atom is zero
The electrical charge on an atom is zero due to presence of same number of protons and electrons.
An atom is the smallest entity comprising of three components. These are protons, neutrons and electrons. Protons and neutrons are centrally located forming the nucleus while electrons revolve around the nucleus. Protons are positively charged while electrons are negatively charged. Neutrons are neutral due to lack of charge.
The number of protons and electrons are same in an atom owing to balancing the overall charge in an atom. This makes the atom electrical neutral and hence the charge on an atom is zero.
Learn more about electrical charge -
https://brainly.com/question/2373424
#SPJ4
"
(a) A one dimensional collision occurs between a cart of mass
10.0 kg moving to the right at 4.0 m/s and a block of mass 6.0 kg
moving to the left at 12.0 m/s. After the collision, the block
moves to
"
After the collision, the block moves to the right at 4.5 m/s. The velocity of the cart after the collision is approximately -5.9 m/s (to the left).
To solve this problem, we can apply the principles of conservation of momentum. The total momentum before the collision should be equal to the total momentum after the collision.
Given:
Mass of cart (m₁) = 10.0 kg
Initial velocity of cart (v₁i) = 4.0 m/s (to the right)
Mass of block (m₂) = 6.0 kg
Initial velocity of block (v₂i) = -12.0 m/s (to the left)
Final velocity of block (v₂f) = 4.5 m/s (to the right)
Let's denote the final velocity of the cart as v₁f.
Conservation of momentum equation:
m₁ v₁i + m₂ v₂i = m₁ v₁f + m₂ v₂f
Substituting the given values:
(10.0 kg * 4.0 m/s) + (6.0 kg * (-12.0 m/s)) = (10.0 kg * v₁f) + (6.0 kg * 4.5 m/s)
Simplifying the equation:
40.0 kg m/s - 72.0 kg m/s = 10.0 kg * v₁f + 27.0 kg m/s
Combining like terms:
-32.0 kg m/s = 10.0 kg * v₁f + 27.0 kg m/s
Rearranging the equation:
10.0 kg * v₁f = -32.0 kg m/s - 27.0 kg m/s
10.0 kg * v₁f = -59.0 kg m/s
Dividing both sides by 10.0 kg:
v₁f = (-59.0 kg m/s) / 10.0 kg
v₁f = -5.9 m/s
Therefore, the velocity of the cart after the collision is approximately -5.9 m/s (to the left).
Learn more about velocity here:
https://brainly.com/question/30559316
#SPJ11
The complete question is:
A one dimensional collision occurs between a cart of mass 10.0 kg moving to the right at 4.0 m/s and a block of mass 6.0 kg moving to the left at 12.0 m/s. After the collision, the block moves to the right at 4.5 m/s. What is the velocity of the cart after the collision?
Problem 12: An electron moves in the positive
x-direction at 3x106 m/s measured within precision of 0.10%.
Find
uncertainty in measuring its position assuming its going in a
straight fashion.
The electron is moving in the positive x-direction at a velocity of 3 × 106 m/s. The precision is 0.10%. To find: Uncertainty in measuring its position.
Uncertainty principle: The product of uncertainty in position and the uncertainty in momentum of a particle is always greater than or equal to Planck's constant.Δx.Δp ≥ h / 4π.
The momentum of the electron can be calculated using its mass and velocity as follows:p = mv where,m = mass of the electron = 9.1 × 10-31 kgv = velocity of the electron = 3 × 106 m/s.
Therefore,p = (9.1 × 10-31 kg) × (3 × 106 m/s)p = 27.3 × 10-25 kg m/s.
The uncertainty in momentum can be calculated as follows:Δp = (0.10 / 100) × pΔp = 0.10% of 27.3 × 10-25 kg m/sΔp = (0.10 / 100) × 27.3 × 10-25 kg m/sΔp = 0.0273 × 10-25 kg m/sΔp = 2.73 × 10-27 kg m/s.
Now, substituting the values of h and Δp in the uncertainty principle formula:
Δx.Δp ≥ h / 4πΔx ≥ h / 4πΔpΔx ≥ (6.626 × 10-34 J s) / 4π(2.73 × 10-27 kg m/s)Δx ≥ 6.626 × 10-34 J s / 4π(2.73 × 10-27 kg m/s)Δx ≥ 6.05 × 10-7 m.
Therefore, the uncertainty in measuring the position of the electron is 6.05 × 10-7 m.
Learn more about Uncertainty principle here ;
https://brainly.com/question/30402752
#SPJ11
An astronaut orbiting the Earth is preparing to dock with a Westar Vi satelite. The satelise is in a circular erbit soo km above the Earth's surface, where the free fat acceieration is 8.29 ms
2
. Take the radur of the Earth as 6400 km. Determine the speed of the satelite. min Determine the time interval required to complete one orbit around the Earth, which is the period of the satelite. min
The speed of the satellite is approximately 7764 m/s, and the period of the satellite (time to complete one orbit) is approximately 86.3 minutes.
To determine the speed of the satellite, we can use the concept of centripetal acceleration. The centripetal acceleration is provided by the gravitational force between the satellite and the Earth. The formula for centripetal acceleration is:
a = v^2 / r,
where "a" is the centripetal acceleration, "v" is the velocity of the satellite, and "r" is the distance between the center of the Earth and the satellite's orbit (the radius of the Earth plus the altitude of the satellite).
Given that the free fall acceleration is 8.29 m/s^2 and the radius of the Earth is 6400 km, we can convert these values to meters and solve for the velocity:
8.29 m/s^2 = v^2 / (6400 km + 500 km),
where the altitude of the satellite above the Earth's surface is 500 km.
Simplifying the equation, we have:
v^2 = 8.29 m/s^2 * (6400 km + 500 km),
v^2 = 8.29 m/s^2 * (6900 km).
Now we can solve for the velocity:
v = √(8.29 m/s^2 * (6900 km)).
Calculating this expression, we find that the speed of the satellite is approximately 7764 m/s.
To determine the period of the satellite (the time interval required to complete one orbit), we can use the formula for the period of a circular orbit:
T = 2πr / v,
where "T" is the period, "r" is the distance between the center of the Earth and the satellite's orbit, and "v" is the velocity of the satellite.
Plugging in the values, we have:
T = 2π * (6400 km + 500 km) / 7764 m/s.
Simplifying and converting kilometers to meters, we find that the period of the satellite is approximately 5180 seconds or 86.3 minutes.
In summary, the speed of the satellite is approximately 7764 m/s, and the period of the satellite (time to complete one orbit) is approximately 86.3 minutes.
Learn more about gravitational force here:
https://brainly.com/question/29190673
#SPJ11
X Incorrect; Try Again; 3 attempts remaining Part 8 What is the capactance? Express your answer in farads.
Capacitance is a property of a capacitor and represents its ability to store electrical charge. It is denoted by the symbol C and is measured in farads (F).
The capacitance of a capacitor is determined by its physical characteristics, such as the size, shape, and materials used. It can be calculated using the equation:
C = Q / V
C = capacitance in farads,
Q = charge stored in the capacitor in coulombs,
V = voltage across the capacitor in volts.
In practical terms, capacitance describes the amount of charge that a capacitor can store per unit voltage. A capacitor with a higher capacitance can store more charge for a given voltage, while a capacitor with a lower capacitance can store less charge.
The farad (F) is a relatively large unit of capacitance, and in many cases, capacitors are commonly measured in smaller units such as microfarads (μF), nanofarads (nF), or picofarads (pF), which are equivalent to 10⁻⁶ F, 10⁻⁹ F, and 10⁻¹² F, respectively.
Thus, a capacitor's capacitance reflects its capacity to hold an electrical charge. It is measured in farads (F) and has the sign C.
To know more about Capacitance, click here:
https://brainly.com/question/31871398
#SPJ4
Complete question:
What is the capacitance?
Express your answer in farads.
A 90.8−kg baseball player slides into second base. The coefficient of kinetic friction between the player and the ground is μ
k
=0.680. (a) What is the magnitude of the frictional force? (b) If the player comes to rest after 1.26 s, what is his initial speed? (a) Number Units (b) Number Units
Part (a) Frictional force acting on the player = 591.2224 N
Part (b)Initial speed of the player = -8.19 m/s
a) Magnitude of the frictional force
The force of friction formula is:
Force of Friction = Normal Force * Coefficient of Friction
Normal Force is given by: Normal Force = Mass * Acceleration due to gravity
Therefore, Frictional Force = Mass * Acceleration due to gravity * Coefficient of Friction
Frictional Force = 90.8 kg * 9.8 m/s² * 0.680
Frictional Force = 591.2224 N
We know that the magnitude of the frictional force acting on the player is 591.2224 N.
b) Initial speed of the player
The force acting on the player is the frictional force acting in the opposite direction to the direction of motion, which is given by:
F = ma
where F is the frictional force acting on the player, m is the mass of the player and a is the acceleration of the player.
Initial velocity of the player is given by: u = v - at
where u is the initial velocity, v is the final velocity, a is the acceleration and t is the time taken.
To find the final velocity of the player, we can use the formula, v = u + at
where v is the final velocity, u is the initial velocity, a is the acceleration and t is the time taken.
Substituting the values given, we have: v = 0 (since the player comes to rest) u = ? a = Frictional force acting on the player / mass of the player a = 591.2224 N / 90.8 kg = 6.5 m/s²t = 1.26 s
Substituting the values in the equation for v, we get 0 = u + (6.5 m/s²) (1.26 s)u = - 8.19 m/s
The initial velocity of the player is -8.19 m/s. Part (a)Frictional force acting on the player = 591.2224 NPart (b)Initial speed of the player = -8.19 m/s
To learn more about frictional force follow the given link
https://brainly.com/question/24386803
#SPJ11
Two identical traveling waves of amplitude 0.7 m, moving in the same direction, are out of phase by Pi/6rad. Find the amplitude of the resultant wave.
The amplitude of the resultant wave is 1.4 m.
To find the amplitude of the resultant wave, we need to consider the interference of the two traveling waves. Given that the waves are identical in amplitude (0.7 m) and are out of phase by π/6 radians, we can use the principle of superposition to determine the resultant amplitude.
When two waves interfere constructively, their amplitudes add up, and when they interfere destructively, their amplitudes cancel out. In this case, since the waves are out of phase, they will interfere constructively.
To determine the amplitude of the resultant wave, we can use the formula:
Resultant amplitude = √(Amplitude1^2 + Amplitude2^2 + 2 * Amplitude1 * Amplitude2 * cos(Δφ))
Where Amplitude1 and Amplitude2 are the amplitudes of the two waves, and Δφ is the phase difference between them.
Plugging in the given values, we have:
Resultant amplitude = √((0.7 m)^2 + (0.7 m)^2 + 2 * (0.7 m) * (0.7 m) * cos(π/6))
Simplifying the expression, we find:
Resultant amplitude ≈ √(0.49 m^2 + 0.49 m^2 + 2 * 0.49 m^2 * cos(π/6))
Resultant amplitude ≈ √(1.96 m^2 + 0.98 m^2)
Resultant amplitude ≈ √(2.94 m^2)
Resultant amplitude ≈ 1.4 m
Therefore, the amplitude of the resultant wave is 1.4 m.
Learn more about amplitude
brainly.com/question/9525052
#SPJ11
What is the wavelength of the photon with energy E=3.3×10
−18
J. Use nm (nanometer) for the unit of the wavelength. Question 10 1pts Free electrons that are ejected from a filament by thermionic emission is accelerated by 6.4kV of electrical potential difference. What is the kinetic energy of an electron after the acceleration? Answer in the unit of eV.
To calculate the wavelength of a photon given its energy, you can use the following formula: E = hc/λ
λ = hc/E
Substituting the given values:
λ = (6.626 × 10^-34 J·s × 3 × 10^8 m/s) / (3.3 × 10^-18 J)
Simplifying the expression:
λ = (6.626 × 3) / 3.3 × 10^(-34 + 8 + 18)
λ ≈ 6.03 × 10^-7 m
To convert this to nanometers, we multiply by 10^9:
λ ≈ 6.03 × 10^(-7 + 9) nm
λ ≈ 603 nm
Therefore, the wavelength of the photon with energy E = 3.3 × 10^-18 J is approximately 603 nm. Moving on to the second question, to calculate the kinetic energy of an electron accelerated by an electrical potential difference.
Kinetic energy (K.E.) = qV
Substituting the given values:
K.E. = (1.6 × 10^-19 C) × (6.4 × 10^3 V)
Simplifying the expression:
K.E. = 10.24 × 10^(-13) eV
K.E. ≈ 10.24 × 10^(-13) eV
Therefore, the kinetic energy of an electron after acceleration by 6.4 kV of electrical potential difference is approximately 10.24 × 10^(-13) eV.
To learn more about wavelength follow:
https://brainly.com/question/32900586
#SPJ11
A point source emits sound waves isotropically. The intensity of the waves 3.20~\mathrm{m}3.20 m from the source is 1.76 \times 10^{-6}~\mathrm{W/m^2}1.76×10−6 W/m2. Let us assume that the energy of the waves is conserved. At what distance RR from the source, do sound waves have a sound level of 0db
At a distance of approximately 7.54 x [tex]10^{-4}[/tex]meters from the source (0.754 mm), the sound waves would have a sound level of 0 dB.
To determine the distance from the source at which sound waves have a sound level of 0 dB, we need to understand the relationship between sound intensity and sound level.
Sound intensity (I) is measured in watts per square meter (W/m²) and is related to sound level (L) in decibels (dB) through the following equation:
L = 10 log₁₀(I/I₀)
Where I₀ is the reference intensity, which corresponds to the threshold of hearing and is approximately 1.0 x [tex]10^{-12}[/tex]W/m².
In this case, the sound level is given as 0 dB, which means that the sound intensity is equal to the reference intensity:
L = 0 dB
I = I₀ = 1.0 x [tex]10^{-12}[/tex] W/m²
We are given the intensity at a distance of 3.20 m from the source, which is 1.76 x [tex]10^{-6}[/tex] W/m². To find the distance (R) at which the sound level is 0 dB, we need to find the point where the intensity decreases to the reference intensity.
Using the inverse square law for sound intensity, which states that sound intensity decreases with the square of the distance from the source:
I = I₀ / [tex]R^{2}[/tex]
Setting the two intensity values equal to each other:
1.76 x [tex]10^{-6}[/tex] W/m² = 1.0 x [tex]10^{-12}[/tex] W/m² / [tex]R^{2}[/tex]
[tex]R^{2}[/tex] = (1.0 x [tex]10^{-12}[/tex] W/m²) / (1.76 x [tex]10^{-6}[/tex] W/m²)
≈ 5.68 x [tex]10^{-7}[/tex] m²
Taking the square root of both sides:
[tex]R= \sqrt{5.68*10^{-7}m^{2} }[/tex]
≈ 7.54 x [tex]10^{-4}[/tex] m
Learn more about intensity here:
https://brainly.com/question/17583145
#SPJ11
Thickest
1 :: Earth (from crust to core)
2:: lithosphere
3:: pedosphere Thinnest
The earth is made up of three main layers: the core, the mantle, and the crust. The thickness of the earth's layers varies, with the thickest layer being the mantle and the thinnest layer being the crust.
The crust is divided into two main layers: the continental crust and the oceanic crust. The thickness of the earth's crust varies depending on where you are on the planet.
For example, the continental crust is thicker than the oceanic crust because it is made up of denser materials.
The thickest part of the earth is the mantle. The mantle is approximately 2,890 kilometers (1,796 miles) thick. It is composed of silicate rock and is divided into two parts: the upper mantle and the lower mantle.
The lithosphere is the solid outermost layer of the earth. It is composed of the crust and the uppermost part of the mantle. The thickness of the lithosphere varies depending on where you are on the planet.
For example, the lithosphere is thicker under continents than it is under oceans. The thickness of the lithosphere ranges from 70 to 250 kilometers (43 to 155 miles). The pedosphere is the outermost layer of the earth's crust that is capable of supporting plant life. It is composed of soil and other organic matter.
The thickness of the pedosphere varies depending on the type of soil and the location. In general, the pedosphere is between 10 and 50 centimeters (4 and 20 inches) thick.
Learn more about earth here ;
https://brainly.com/question/31064851
#SPJ11
3. When a real incompressible fluid flows through a circular pipe, energy is dissipated due to the viscosity of the fluid. The Moody diagram on page 9 represents this energy loss as a dimensionless friction factor (f) which is a function of the Reynolds number of the flow (Re) for both laminar and turbulent flow and also a function of the relative roughness (=/D) for turbulent flow. a) Explain this dependence of friction factor (f) upon the relative roughness (E/D) for turbulent flow and specifically why the friction factor increases with relative roughness at any given Reynolds number. Water with a density of 1000 kg/m³ and dynamic viscosity of 1.0 x 10³ Pa.s flows under gravity from a reservoir through a cast iron pipe of 75mm internal diameter and an equivalent roughness of 0.26mm at a flow rate of 600 litres per minute into the local atmosphere. The flow path comprises a sharp edged entrance from the reservoir into the pipe (loss factor (KL) of 0.5) and a 100m horizontal length of the cast iron pipe. There is no fitting or restriction at the outlet of the pipe into the local atmosphere and so no additional minor head loss. The liquid surface of the reservoir is exposed to the local atmosphere. b) Calculate the major head loss (hL) and minor head loss (hm) in the flow path and the height of water in the reservoir required above the sharp edged entrance into the pipe to achieve the required flow rate. c) If the height of water in the reservoir above the sharp edged entrance to the pipe and the pipe diameter and length are fixed, propose two other ways to increase the flow rate from the reservoir, evaluate their relative effectiveness and state which is the best option. Steady, uniform, and laminar flow of a fluid with dynamic viscosity (n) occurs between two horizontal, infinite, parallel plates separated by a distance (h) in the vertical direction (y). The lower plate (y=0) is stationary and the upper plate (y=h) moves with velocity (U) in the direction of flow (x). The vertical coordinate (y) where the maximum velocity (u) occurs, (y'), is given by below equation. Assume fluid of dynamic viscosity 0.5 Pa.s passes between the two plates which are 20mm apart with a pressure difference per unit length in the (x) direction of -500 Pa/m. h Undp hdx, 2 d) Calculate what happens to (y') as the upper plate velocity (U) increases from 0 (stationary) to 0.1 m/s and then to 0.2 m/s. With the aid of sketches, provide a physical explanation for this behaviour.
a) The friction factor increases with relative roughness at any given Reynolds number for turbulent flow because there is more resistance caused by the increased roughness. The rougher the pipe, the more it resists the flow, which results in a higher friction factor.
b) The following formulas can be used to calculate the major head loss (hL) and minor head loss (hm) in the flow path and the height of water in the reservoir required above the sharp-edged entrance into the pipe to achieve the required flow rate:
First, compute the velocity in the pipe:
[tex]v = Q/A = (600/1000) / [(pi/4)*(75/1000)^2] = 1.81 m/s[/tex]
where:
Q is the flow rate (l/min)
A is the cross-sectional area of the pipe (m²)
Compute the Reynolds number:
[tex]Re = (Dvρ) / μ = (75/1000)(1.81)(1000) / 1 x 10^-3 = 136,029[/tex]
Compute the friction factor:
Use the Moody chart to determine the friction factor:
From the chart, f = 0.03
Compute the major head loss:
[tex]hL = (fLv²) / (2gd) = (0.03)(100)(1.81²) / (2 x 9.81 x 100/1000) = 1.6 m[/tex]
where:
L is the pipe length (m)
g is the gravitational acceleration (9.81 m/s²)
Compute the minor head loss:
[tex]hm = KL(v²/2g) = 0.5(1.81²/2 x 9.81) = 0.17 m[/tex]
Compute the height of water:
Pump head = hL + hm = 1.6 + 0.17 = 1.77 m
c) Two ways to increase the flow rate from the reservoir are to increase the pipe diameter or decrease the pipe length. Increasing the pipe diameter is more effective than decreasing the pipe length because it has a greater impact on the flow rate. Doubling the pipe diameter, for example, would increase the flow rate by a factor of 16.
d) The value of y' decreases as the upper plate velocity U increases from 0 (stationary) to 0.1 m/s and then to 0.2 m/s. As the velocity of the upper plate increases, the flow rate and Reynolds number also increase. The increased flow rate pushes the maximum velocity point towards the lower plate.
To know more about increases visit :
https://brainly.com/question/2285058
#SPJ11
what is the fractional decrease in amplitude per cycle?
Fractional decrease in amplitude per cycle is the percentage decrease of amplitude per cycle.
What is amplitude?The amplitude of a wave refers to the maximum displacement of a point on a wave from its resting position. In other words, it is the height of a wave, or how far it deviates from its undisturbed position.What is fractional decrease?The fractional decrease of a wave's amplitude is the percentage decrease in amplitude from the original value. It is also known as the damping ratio and is denoted by ζ. The formula for calculating the fractional decrease in amplitude per cycle is as follows:ζ= (a - b) / a,
Where a is the initial amplitude and b is the amplitude after a cycle.
For example, if a wave has an initial amplitude of 10 cm and a final amplitude of 8 cm after one cycle, then the fractional decrease in amplitude is:ζ= (10 - 8) / 10= 0.2 or 20%Therefore, the fractional decrease in amplitude per cycle is 20%.
#SPJ11
learn more related to "fractional decrease in amplitude per cycle"https://brainly.com/question/17070403
Two point charges are located a distance of 2 m apart. Charge one is +2C and charge two is −3C. What is the potential energy for that configuration? [K=9
∗
10
∧
9Nm
∧
2/C
∧
2] −27
∗
10
∧
9 J −9
∗
10
∧
9 J −13.5
∗
10
∧
9 J −14
∗
10
∧
9 J
Let us first calculate the electrostatic force experienced by the point charges due to each other.
The force experienced by charge 1 due to charge 2 is:
[tex]$$\begin{aligned} F_{1,2} &=\frac{1}{4\pi\varepsilon_0}\frac{Q_1Q_2}{r^2}\\ &=\frac{1}{4\pi(9\times10^9)}\frac{2\times(-3)}{2^2}\\ &=\frac{-3}{4\pi(9\times10^9)}\\ &= -1.25\times10^{-10}N\end{aligned}$$[/tex]
Where
r = 2m
is the distance between the two-point charges, and
Q1 = 2C and Q2 = -3C
are the magnitudes of the two-point charges.
Now, the potential energy of the two-point charges is given by:
[tex]$$U_{1,2}=K_e\frac{Q_1Q_2}{r}$$$$\begin{aligned} U_{1,2} &= (9\times10^9)\frac{(2)(-3)}{2}\\ &=(-27\times10^9)J\\ &= -2.7\times10^{10}J\end{aligned}$$[/tex]
the potential energy for the configuration is -2.7×10¹⁰J, which is represented by option D.
To know more about electrostatic visit:
https://brainly.com/question/16489391
#SPJ11
A particle moves in a straight line with a constant acceleration of 4.88 m/s2 in the positive x direction.
a) If its initial velocity is 2.19 m/s in the positive x direction, then how long, in seconds, does it take to move 6.23 m?
b) What is the particle’s final velocity in m/s?
The time taken to move 6.23 m is approximately 1.19 seconds. The particle's final velocity is 8.06 m/s.
Initial velocity (u) = 2.19 m/s
Acceleration (a) = 4.88 m/s²
Distance (s) = 6.23 m
To find:Time taken (t) = ?
We know, v² = u² + 2as
Where,v = final velocity = ?
u = initial velocity = 2.19 m/s
a = acceleration = 4.88 m/s²
s = distance = 6.23 m
Let's find the final velocity,v² = u² + 2as
v² = (2.19)² + 2(4.88)(6.23)
v² = 4.7961 + 60.3248
v² = 65.1209
v = √65.1209
v ≈ 8.06 m/s
So, the final velocity of the particle is approximately 8.06 m/s.
a) Now, let's find the time taken,t = (v - u) / at
t = (8.06 - 2.19) / (4.88)
t ≈ 1.19 s
Therefore, the time taken to move 6.23 m is approximately 1.19 seconds.
b) The particle's final velocity is 8.06 m/s.
Learn more about the velocity from the given link-
https://brainly.com/question/80295
#SPJ11
John always paddles his canoe at constant speed v with respect to the still water of a river. One day, the river current was due west and was moving at a constant speed that was a little less than v with respect to that of still water. John decided to see whether making a round trip across the river and back, a north-south trip (in which he paddles in the north/south direction, but doesn't actually travel in either the north or south direction, respectively), would be faster than making a round trip an equal distance east-west. What was the result of John's test? The time for the north-south trip was greater than the time for the east-west trip. One cannot tell because the exact speed of the river with respect to still water is not given. The time for the north-south trip was equal to the time for the east-west trip. The time for the north-south trip was less than the time for the east-west trip.
John always paddles his canoe at a constant speed v with respect to the still water of a river. One day, the river current was due west and was moving at a constant speed that was a little less than v with respect to that of still water.
John decided to see whether making a round trip across the river and back, a north-south trip (in which he paddles in the north/south direction, but doesn't actually travel in either the north or south direction, respectively), would be faster than making a round trip an equal distance east-west. We have to find out the result of John's test.The time for the north-south trip was equal to the time for the east-west trip is the result of John's test.What we can infer from the given problem is that John paddles his canoe at a constant speed v with respect to the still water of a river.
To know more about respect visit:
https://brainly.com/question/19711470
#SPJ11
Water flows through a 2.5-cm-diameter pipe at 1.8 m/s. If the
pipe narrows to 2.0-cm diameter, what is the flow speed (in m/s) in
the constriction?
If the pipe narrows to 2.0-cm diameter, the flow speed in the constriction is approximately 5.28 cm/s.
For finding low speed in the constriction, apply the principle of continuity, which states that the mass flow rate of an incompressible fluid remains constant in a closed system. Since the mass flow rate is constant, the product of the cross-sectional area and the flow speed at any point in the system should remain the same.
Initially, the water flows through a pipe with a diameter of 2.5cm. Calculate the cross-sectional area of this pipe using the formula:
[tex]A = \pi r^2[/tex]
where r is the radius (half the diameter). Thus, the initial cross-sectional area is:
[tex]A_1 = \pi (2.5/2)^2 = 4.91 cm^2[/tex]
Given that the initial flow speed is 1.9m/s, can find the initial volume flow rate using the formula
[tex]Q_1 = A_1v_1[/tex]
where [tex]Q_1[/tex] is the initial volume flow rate.
Plugging in the values,
[tex]Q_1 = 4.91 cm^2 * 1.9m/s = 9.34 cm^3/s.[/tex]
When the water enters the constriction with a diameter of 1.5cm, we can calculate the cross-sectional area of the constriction using the same formula. Thus, the constriction's cross-sectional area is
[tex]A_2 = \pi (1.5/2)^2 = 1.77 cm^2[/tex]
For finding the flow speed in the constriction, rearrange the formula as
[tex]v_2 = Q_2/A_2[/tex],
where [tex]v_2[/tex] is the flow speed in the constriction, and [tex]Q_2[/tex] is the volume flow rate in the constriction.
Plugging in the known values,
[tex]v_2 = 9.34 cm^3/s / 1.77 cm^2 = 5.28 cm/s[/tex]
Therefore, the flow speed in the constriction is approximately 5.28 cm/s.
Learn more about mass flow rate here:
https://brainly.com/question/30763861
#SPJ11