The system of equations that is represented by the graph include:
D. y = x - 4
[tex]y=\frac{x-4}{x+2}[/tex]
How to determine an equation of this line?In Mathematics and Geometry, the point-slope form of a straight line can be calculated by using the following mathematical equation (formula):
y - y₁ = m(x - x₁)
Where:
x and y represent the data points.m represent the slope.First of all, we would determine the slope of the red line;
Slope (m) = (y₂ - y₁)/(x₂ - x₁)
Slope (m) = (0 + 5)/(4 + 1)
Slope (m) = 5/5
Slope (m) = 1
At point (4, 0) and a slope of 1, a linear equation for C can be calculated by using the point-slope form as follows:
y - y₁ = m(x - x₁)
y - 0 = 1(x - 4)
y = x - 4
Since the rational function has a y-intercept of (0, -2), it would have a vertical asymptote and the denominator would be undefined at x = 2;
[tex]y=\frac{x-4}{x+2}[/tex]
Read more on point-slope here: brainly.com/question/24907633
#SPJ1
Missing information:
The question is incomplete and the complete question is shown in the attached picture.
evaluate 6 with exponent of -3
Answer:
1/216
Step-by-step explanation:
6×6×6=216
negative exponents meaning reciprocal
so 216/1 means 1/216
Which value of c is in the domain of f(x)
The value of c in the domain of f(x) depends on the specific function f(x) and its domain.
In order to determine which value of c is in the domain of f(x), we need to know the function f(x) and its domain. A domain is the set of all possible input values of a function.
If a value of c is in the domain of f(x), then we can plug it into the function and get a valid output.
In general, a function f(x) can have a restricted domain due to certain conditions or limitations. For example, a square root function cannot have negative values under the radical because that would result in an imaginary number.
Thus, the domain of a square root function is restricted to non-negative values.
In order to find the domain of a function, we need to consider any restrictions on the input values. For example, if we have the function f(x) = 1/x, we cannot plug in x = 0 because that would result in division by zero, which is undefined.
Therefore, the domain of f(x) is all real numbers except 0. We can write this as D(f) = {x : x ≠ 0}.Once we know the domain of f(x), we can check which value of c is in the domain by seeing if it satisfies the condition.
For example, if the domain of f(x) is D(f) = {x : x > 2}, then c = 3 is in the domain because 3 is greater than 2. On the other hand, c = 1 is not in the domain because 1 is less than 2.
Therefore, the value of c in the domain of f(x) depends on the specific function f(x) and its domain.
For more such questions on domain
https://brainly.com/question/2264373
#SPJ8
PLEASE HELP ASAP Arrange the expressions in increasing order of their values.
(10⁰x 10¹ x 1¹⁰) (10 x 10¹) (10⁰+10¹+1¹⁰) (10⁰+10¹x 1¹⁰)
[tex]\underline{\underline{\purple{\huge\sf || ꪖꪀᦓ᭙ꫀ᥅}}}[/tex]
First, we can simplify each expression:
(10⁰x10¹x1¹⁰) = 10¹¹
(10x10¹) = 100
(10⁰+10¹+1¹⁰) = 1 + 10 + 1,000,000,000 = 1,000,000,011
(10⁰+10¹x1¹⁰) = 10¹⁰
Now we can arrange them in increasing order:
10¹¹ < 10¹⁰ < 100 < 1,000,000,011
So the correct order from smallest to largest is:
(10⁰x10¹x1¹⁰) (10⁰+10¹x1¹⁰) (10 x 10¹) (10⁰+10¹+1¹⁰)
or
(10¹¹) (10¹⁰) (100) (1,000,000,011)
P=x-2 ÷ x+1 for whar value of x is P equal to zero
Answer:
x = 2
Step-by-step explanation:
P = [tex]\frac{x-2}{x+1}[/tex]
P will equal zero when the numerator is equal to zero , that is
x - 2 = 0 ( add 2 to both sides )
x = 2
P = 0 when x = 2
Need Help Asap
70s = b
How many wing beats in one minute (60 seconds)?
Answer:
4,200
Step-by-step explanation:
70s = b
70(60) = b
4200 = b
Helping in the name of Jesus.
Find the equation of a line that contains points (5,-3) and (-2,-4) in standard form
To find the equation of a line that passes through the points (5, -3) and (-2, -4) in standard form, we can use the point-slope form of a linear equation and then convert it to standard form.
Determine the slope (m) of the line using the formula:
m = (y2 - y1) / (x2 - x1)
For the given points (5, -3) and (-2, -4), we have:
m = (-4 - (-3)) / (-2 - 5) = (-4 + 3) / (-2 - 5) = -1 / (-7) = 1/7
Use the point-slope form of a linear equation:
y - y1 = m(x - x1)
Using the point (5, -3), we have:
y - (-3) = (1/7)(x - 5)
Simplifying:
y + 3 = (1/7)(x - 5)
Convert the equation to standard form:
Multiply both sides of the equation by 7 to eliminate the fraction:
7y + 21 = x - 5
Rearrange the equation to have the x and y terms on the same side:
x - 7y = 26
The equation of the line in standard form that passes through the points (5, -3) and (-2, -4) is x - 7y = 26.
For such more question on formula
https://brainly.com/question/29797709
#SPJ8
3 1/3 divided by 1 1/5
Answer:
25/9
Step-by-step explanation:
3 1/3 ÷ 1 1/5
3 1/3 = 10/3
1 1/5 = 6/5
10/3 ÷ 6/5 = 10/3 x 5/6 = 50/18 = 25/9
So, the answer is 25/9
Find g'(x) for the given function. Then find g'(-3),g'(0) , and g'(2).
g(x)=√3x
Answer:
Step-by-step explanation:
g'(x) = 0.5*[(3x)^(-0.5)]*3 (By the power and chain rule)
And then just plug in 3, 0, and 2 into the given equation for g'(x)
(x+6/7)^2+(y+4)^2=49/4 find three points of this circle
To find three points on the circle defined by the equation (x+67)2+(y+4)2=494(x+76)2+(y+4)2=449, we can manipulate the equation to extract the center and radius information.
Expanding the equation, we have:
x2+127x+3649+y2+8y+16=494x2+712x+4936+y2+8y+16=449
Combining like terms, we get:
x2+y2+127x+8y+1149=0x2+y2+712x+8y+4911=0
Comparing this equation to the standard form of a circle, (x−a)2+(y−b)2=r2(x−a)2+(y−b)2=r2, we can identify the center (a,b)(a,b) as −67,−4−76,−4 and the radius rr as 7227.
Now we can find three points on the circle by substituting different angles into the equation. For example:
At 00 degrees: (−6/7+72),−4(−6/7+27),−4 or (11/14,−4)(11/14,−4)
At 9090 degrees: −6/7,−4+72−6/7,−4+27 or −6/7,1/2−6/7,1/2
At 180180 degrees: (−6/7−72),−4(−6/7−27),−4 or (−55/14,−4)(−55/14,−4)
Therefore, three points on the circle are (11/14,−4)(11/14,−4), (−6/7,1/2)(−6/7,1/2), and (−55/14,−4)(−55/14,−4).
For such more question on equation
https://brainly.com/question/29174899
#SPJ8
Una muestra de 26 personas seleccionadas al azar de una población de un barrio tiene una media salarial de 1800 pesos y una variante de 10 pesos estime la media salarial en el barrio a un nivel de confianza de 90
The estimated mean salary in the neighborhood at a 90% confidence level based on the given sample is {1798.94, 1801.06}.
What is the estimated mean salary in the neighborhood?Given data:
Sample size (n) = 26Sample mean (x) = 1800 pesosSample variance (s²) = 10 pesosConfidence level = 90%Since we know the sample variance (s²), the standard deviation is:
s = √(s²)
s = √(10)
s = 3.16 pesos
Confidence Interval = Sample Mean ± (Critical Value * Standard Error)
The critical value is obtained from the t-distribution table based on the desired confidence level and degrees of freedom (n-1). For a 90% confidence level and 25 degrees of freedom, the critical value is 1.708.
SE = s / √n
SE = 3.16 / √26
SE = 0.618 pesos
Confidence Interval = 1800 ± (1.708 * 0.618)
= 1800 ± 1.055544
= {1798.94, 1801.06}.
Read more about Mean
brainly.com/question/1136789
#SPJ1
[3r-15] if r is less than 5
When r is less than 5 and we substitute r = 4 into the expression [3r-15], the result is -3.
The expression [3r-15] represents an algebraic expression that depends on the value of r. The condition given is that r is less than 5. To evaluate this expression, we substitute the value of r into the expression and simplify it.
Given that r is less than 5, let's substitute r = 4 into the expression:
[3(4) - 15]
= [12 - 15]
= -3
Therefore, when r is less than 5 and we substitute r = 4 into the expression [3r-15], the result is -3.
It's important to note that this answer is specific to the given condition that r is less than 5. If the condition changes or if r is greater than or equal to 5, the result of the expression may be different.
for such more question on expression
https://brainly.com/question/4344214
#SPJ8
log3(x+25) -log(x - 1) = 3
Please help my teacher didn’t teach me this and I need help
Solve the problem and explain and if needed round to the nearest 100th
The value of x is 1.08
What is logarithm ?A logarithm is the power to which a number must be raised in order to get some other number.
For example log 100 = 2 . This means that the base 10 logarithm of 100 is 2 and we can also say that 10² = 100
Similarly, solving the equation;
log3(x+25) -log(x - 1) = 3
using law of logarithm
log( 3(x+25)/x-1) = log 1000
therefore;
3x + 75= 1000x -1000
1075 = 1000x -3x
1075= 997x
x = 1075/997
x = 1.08
Therefore the value of x is 1.08
learn more about logarithm from
https://brainly.com/question/30340014
#SPJ1
Please use the following for the next 6 questions. Suppose that the average weekly earnings for employees in general automotive repair shops is $450, and that the population standard deviation for the earnings for such employees is $50. A sample of 100 such employees is selected at random.
1) What is the probability distribution of the average weekly earnings for employees in general automotive repair shops?
2) Find the probability that the average weekly earnings is less than $445.
3) Find the probability that the average weekly earnings is exactly equal to $445.
4) Find the probability that the average weekly earnings is between $445 and $455.
5) In answering the previous 3 questions, did you have to make any assumptions about the population distribution?
6) Now assume that the weekly earnings for employees in all general automotive repair shops is normally distributed, obtain the probability that a given employee will earn more than $480 in a given week.
1) The probability distribution of the average weekly earnings for employees in general automotive repair shops is the sampling distribution of the sample mean. According to the Central Limit Theorem, if the sample size is large enough, the sampling distribution of the sample mean is approximately normal, with a mean equal to the population mean and a standard deviation equal to the population standard deviation divided by the square root of the sample size.
2) To find the probability that the average weekly earnings is less than $445, we can standardize the sample mean and use a z-table. The z-score for $445 is calculated as follows: z = (445 - 450) / (50 / sqrt(100)) = -1. Using a z-table, we find that the probability that the average weekly earnings is less than $445 is approximately 0.1587.
3) Since we are dealing with a continuous distribution, the probability that the average weekly earnings is exactly equal to any specific value is zero.
4) To find the probability that the average weekly earnings is between $445 and $455, we can subtract the probability that it is less than $445 from the probability that it is less than $455. The z-score for $455 is calculated as follows: z = (455 - 450) / (50 / sqrt(100)) = 1. Using a z-table, we find that the probability that the average weekly earnings is less than $455 is approximately 0.8413. Therefore, the probability that it is between $445 and $455 is approximately 0.8413 - 0.1587 = 0.6826.
5) In answering questions 2-4, we made an assumption about the population distribution based on the Central Limit Theorem. We assumed that since our sample size was large enough (n=100), our sampling distribution would be approximately normal.
6) If we assume that weekly earnings for employees in all general automotive repair shops are normally distributed with a mean of $450 and a standard deviation of $50, then we can calculate the z-score for an employee earning more than $480 in a given week as follows: z = (480 - 450) / 50 = 0.6. Using a z-table, we find that the probability that an employee will earn more than $480 in a given week is approximately 1 - 0.7257 = 0.2743.
In a popular online role playing game, players can create detailed designs for their character's "costumes," or appearance. Tariq sets up a website where players can buy and sell these costumes online. Information about the number of people who visited the website and the number of costumes purchased in a single day is listed below.
The probability that a person will purchase no more than one costume is given as follows:
93%.
How to calculate a probability?The parameters that are needed to calculate a probability are listed as follows:
Number of desired outcomes in the context of a problem or experiment.Number of total outcomes in the context of a problem or experiment.Then the probability is calculated as the division of the number of desired outcomes by the number of total outcomes.
The total number of outcomes for this problem is given as follows:
187 + 228 + 29 = 444.
Only 29 people purchased more than one costume, hence the probability of at most one costume is calculated as follows:
(444 - 29)/444 = 0.93 = 93%.
Learn more about the concept of probability at https://brainly.com/question/24756209
#SPJ1
when this net is folded into a cube which two points does point x meet
The points will meet x when it is folded are C or E
A point is a location of an item by taking reference of the origin, in typical case we regard it at (0,0), At the origin value of both the coordinate position is considered to be Zero, In simple words point indicates how much it is above or below the coordinate axes.
The vertical distance from the x axis is referred to as the y coordinate, while the horizontal distance from the x axis is referred to as the x coordinate.
A green colored Net,
After folding x point will meet the points = ?
When we start folding,
First step,
Side ABCD and DEFG will be folded,
C and E will meet with each other
Second Step,
Side ABCD and AGHI will be folded,
B and I will meet with each other
Third step,
Side DEFG and AGHI will be folded,
F and H will meet each other
Fourth step,
Upper portion AHI will cover the upper portion BCF of the box
X will at position of C or E
Hence, the X will meet
For such more question on points:
https://brainly.com/question/26865
#SPJ8
The following question may be like this:
When this net is folded up, which two points meet X?
6 ft
4 ft
1ft
Find the area of
this irregular shape.
a = [?] ft²
4 ft
1ft
12 ft
4 ft
4 ft
The area of the irregular shape is 34 square feet.
What is the area of this irregular shape?To find the area of the irregular shape, we need to break it down into smaller components and calculate their individual areas.
We will assume the irregular shape is composed of three rectangles.
Rectangle 1: Length = 6 ft, Width = 4 ft.
Area = Length × Width
Area = 6 ft × 4 ft
Area = 24 square feet.
Rectangle 2: Length = 4 ft, Width = 1 ft.
Area = Length × Width
Area = 4 ft × 1 ft
Area = 4 square feet.
Rectangle 3: Length = 1 ft, Width = 6 ft.
Area = Length × Width
Area = 1 ft × 6 ft
Area = 6 square feet.
Total Area = Area of Rectangle 1 + Area of Rectangle 2 + Area of Rectangle 3
Total Area = 24 square feet + 4 square feet + 6 square feet
Total Area = 34 square feet.
Read more about Area
brainly.com/question/2607596
#SPJ1
Please use the following to answer the next 4 questions. A soft drink filling machine, when in perfect adjustment, fills the bottles with 12 ounces of soft drink. A random sample of 49 bottles is selected, and the contents are measured. The sample yielded a mean content of 11.88 ounces with a standard deviation of 0.35 ounces.
1.State the null and alternative hypotheses.
a. H0: µ = 0, Ha: µ > 11.88
b. H0: µ = 0, Ha: µ ≠ 11.88
c. H0: µ = 0, Ha: µ > 12
d. H0: µ = 0, Ha: µ ≠ 12
2.Specify the rejection region for = 0.01. Reject H0 if
a. t > 2.68
b. t < -2.68
c. |t| > 2.68
d. z < 2.68
3.Calculate the p-value
a. 0.01
b. 0.02
c. 0.005
d. 0.05
4. What is your conclusion?
a. Reject H0
b. Fail to reject H0
c. Reject Ha
d. Fail to reject Ha
The null and alternative hypotheses can be stated as follows:
c. H0: µ = 12, Ha: µ ≠ 12
The null hypothesis (H0) assumes that the population mean content of the bottles is 12 ounces, indicating perfect adjustment of the filling machine. The alternative hypothesis (Ha) states that the population mean content is not equal to 12 ounces, suggesting that the machine is not in perfect adjustment.
The rejection region for α = 0.01 can be specified as:
c. |t| > 2.68
This means that we would reject the null hypothesis if the absolute value of the calculated t-statistic is greater than 2.68.
To calculate the p-value, we need the t-statistic corresponding to the sample mean and standard deviation. With a sample mean of 11.88 ounces, a standard deviation of 0.35 ounces, and a sample size of 49, we can calculate the t-statistic. The p-value represents the probability of observing a sample mean as extreme as the one obtained, assuming the null hypothesis is true.
The p-value cannot be determined without the t-statistic value or the corresponding degrees of freedom.
Without the p-value, we cannot draw a definitive conclusion. To make a conclusion, we would compare the calculated t-statistic to the critical t-value based on the chosen significance level (α = 0.01). If the calculated t-statistic falls within the rejection region (|t| > 2.68), we would reject the null hypothesis. If the calculated t-statistic falls outside the rejection region, we would fail to reject the null hypothesis.
For such more question on hypotheses
https://brainly.com/question/606806
#SPJ8
Please awnser asap I will brainlist
The element of A n B is { 7, 8}
What is set?A set is the mathematical model for a collection of different things; a set contains elements or members, which can be mathematical objects of any kind.
For example, if the element of P is even numbers from 1 to 20 and element of Q is factor of 6 from 1 to 20 then we can say that set Q is a subset of set P.
The sign 'n' means intersection and this means what is common to two or more set.
If set A = { 1,2,5,7,8}
set B = { 6,7,8,9}
then we can see that 7 and 8 are common to both sides, then
A n B = { 7,8}
learn more about set from
https://brainly.com/question/13458417
#SPJ1
What is the solution to |x + 4| – 2 > 12? –6 < x < 16 –18 < x < 10 x < –6 or x > 16 x < –18 or x > 10
Answer:
x < –18 or x > 10
Step-by-step explanation:
|x + 4| – 2 > 12
x + 4 - 2 > 12
x + 2 > 12
x > 10
-x - 4 - 2 > 12
-x - 6 > 12
-x > 18
x < 18
So, the answer is x < –18 or x > 10
Answer: D: x < –18 or x > 10
Step-by-step explanation:
help me please i would appreciate it so so much
The length of CF, considering the Pythagorean Theorem in this problem, is given as follows:
CF = 26.08 m.
What is the Pythagorean Theorem?The Pythagorean Theorem states that in the case of a right triangle, the square of the length of the hypotenuse, which is the longest side, is equals to the sum of the squares of the lengths of the other two sides.
Hence the equation for the theorem is given as follows:
c² = a² + b².
In which:
c > a and c > b is the length of the hypotenuse.a and b are the lengths of the other two sides (the legs) of the right-angled triangle.The length of EC is given as follows:
(EC)² = 10² + 24²
[tex]EC = \sqrt{10^2 + 24^2}[/tex]
EC = 26.
Then the length of CF is given as follows:
CF² = 26² + 2²
[tex]CF = \sqrt{26^2 + 2^2}[/tex]
CF = 26.08 m.
More can be learned about the Pythagorean Theorem at brainly.com/question/30203256
#SPJ1
Ethan decides to type up some documents while waiting the meeting to start.He can type 2 pages every 1/8 hour.If the meeting started 3/4 hour later than the scheduled time,how many pages can he type before the meeting starts?
Answer: 4 pages
Step-by-step explanation:
To solve this problem, we need to use the formula:
Rate = Output/Time
Let's use "p" to represent the number of pages Ethan can type and "t" to represent the time he has before the meeting starts.
Rate = 2 pages/(1/8 hour) = 16 pages/hour
Since the meeting starts 3/4 hour later than the scheduled time, Ethan has t = 1 - 3/4 = 1/4 hour to type pages before the meeting starts.
Output = Rate * Timep = (16 pages/hour) * (1/4 hour) = 4 pages
Therefore, Ethan can type 4 pages before the meeting starts.
Answer: 4 pages
If x + y = 4, then 2(x + y) =
When given that x + y = 4, the algebric expression 2(x + y) simplifies to 8.
To find the value of 2(x + y) when given that x + y = 4, we can substitute the value of x + y into the expression.
We are given x + y = 4.
To solve for 2(x + y), we multiply both sides of the equation x + y = 4 by 2:
2(x + y) = 2 * 4
This simplifies to:
2(x + y) = 8
Therefore, the value of 2(x + y) is 8.
To explain the reasoning behind this, let's break it down step by step:
1. We start with the equation x + y = 4.
2. To find 2(x + y), we distribute the 2 to both terms inside the parentheses: 2 * x + 2 * y.
3. This simplifies to 2x + 2y.
4. Since x + y = 4, we can substitute 4 for x + y in the expression 2x + 2y.
5. Therefore, 2(x + y) becomes 2 * 4, which equals 8.
In summary, when given that x + y = 4, the expression 2(x + y) simplifies to 8.
for more such question on algebric expression visit
https://brainly.com/question/395066
#SPJ8
In a certain Algebra 2 class of 23 students 7 of them basketball and 2 of them play baseball
The algebra class of 14 students in the Algebra 2 class of 23 students do not play basketball or baseball.
The number of students in a certain Algebra 2 class of 23 students who play basketball and baseball is 9, given that 7 of them play basketball and 2 of them play baseball.
The number of students in the class who do not play basketball or baseball is given by the number of students who do not play basketball plus the number of students who do not play baseball and the students who do not play basketball or baseball.
However, since each student is either playing basketball or baseball or neither, we can say that the total number of students who do not play basketball or baseball is given by the number of students in the class minus the total number of students who play basketball or baseball.
Thus, the number of students who do not play basketball or baseball is given by:
23 - 9 = 14
Therefore, 14 students in the Algebra 2 class of 23 students do not play basketball or baseball.
For more related questions on algebra class:
https://brainly.com/question/20437950
#SPJ8
TION 5 1 POINT is thinking of a number n, and he wants his sister to guess the number. His first clue is that 5 less than 5 times his ber is at least 15 and at most 50. Write a compound inequality that shows the range of numbers that Isabella might be king of. e your answer in interval notation. For example −3 < n ≤ 5 in interval notation is (-3,5]. vide your answer below:
Isabella's possible numbers can be represented by the compound inequality 15 ≤ 5n - 5 ≤ 50, which in interval notation is [4, 11].
Based on the given information, we can set up a compound inequality to represent the range of numbers that Isabella might be thinking of.
Let's denote the number Isabella is thinking of as 'n'.
The clue states that "5 less than 5 times his number is at least 15 and at most 50."
We can express this as:
15 ≤ 5n - 5 ≤ 50
To solve this compound inequality, we add 5 to all three parts of the inequality:
15 + 5 ≤ 5n - 5 + 5 ≤ 50 + 5
20 ≤ 5n ≤ 55
Finally, dividing all parts of the inequality by 5:
20/5 ≤ n ≤ 55/5
4 ≤ n ≤ 11
Therefore, Isabella's number, 'n', lies in the range [4, 11] in interval notation. In summary, the compound inequality 15 ≤ 5n - 5 ≤ 50 represents the range of numbers that Isabella might be thinking of. The interval notation [4, 11] indicates that her number could be any value between 4 and 11, inclusive.
Know more about inequality here:
https://brainly.com/question/30238989
#SPJ8
In right triangle ABC the altitude CH to the hypotenuse AB intersects angle bisector AL at point D. Find BC if AD = 8 cm and BH = 4 cm.
THIS IS RSM PROBLEM PLEASE HELP!!!!!!!
Therefore, BC is equal to 4 cm.
To solve this problem, we can use the Angle Bisector Theorem and the Pythagorean Theorem.
Let's start by applying the Angle Bisector Theorem. According to the theorem, the ratio of the segments of the hypotenuse formed by the altitude is equal to the ratio of the corresponding sides of the triangle.
In triangle ABC, we have:
AD/DB = AC/CB
Given that AD = 8 cm, we need to find DB. Let's denote DB as x.
8/x = AC/CB
Since AC is the altitude, it can be determined by applying the Pythagorean Theorem in right triangle ACH.
AC^2 = AH^2 + HC^2
AC^2 = (AB - BH)^2 + HC^2
AC^2 = (BC - 4)^2 + HC^2
Now, let's apply the Pythagorean Theorem in right triangle BCH.
BC^2 = BH^2 + HC^2
BC^2 = 4^2 + HC^2
Since AC = BC - 4, we can substitute these expressions into the equation:
(BC -4)^2 + HC^2 = BC^2
Expanding and simplifying this equation, we get:
BC^2 - 8BC + 16 + HC^2 = BC^2
Simplifying further, we have:
-8BC + 16 + HC^2 = 0
Now, let's substitute the value of HC = AD - AH = 8 - 4 = 4 into the equation:
-8BC + 16 + 4^2 = 0
-8BC + 16 + 16 = 0
-8BC + 32 = 0
-8BC = -32
BC = -32 / -8
BC = 4
For such more question on Angle Bisector
https://brainly.com/question/24677341
#SPJ8
Please awnser asap I will brainlist
Answer:
Lat A34,13,14) and E = [8] Insert or to make the statement trus
A \ mathbb E
Insert or to make the statement trun
A)-
(1)0$
100 Points! Geometry question. Determine whether each pair of triangles is similar. If so, write a similarity statement. If not, what would be sufficient to prove the triangles similar? Explain your reasoning. Photo attached. Thank you!
Answer:
Δ ABC [tex]\bold{\sim}[/tex] ΔPQR is similar.
Step-by-step explanation:
Similar triangles are two or more triangles that have the same shape, but their sides are in proportion.
For Question:
In Δ ABC and ΔPQR
AB:PQ =8:6=4:3
BC: QR=12:9=4:3
AC: PR=12:9=4:3
Since the length of any side of one triangle is by the corresponding side of another triangle, you will get the same number.
Therefore,
Δ ABC [tex]\bold{\sim}[/tex] ΔPQR is similar.
Hence Proved:
Answer:
ΔABC ~ ΔPQR
Step-by-step explanation:
In similar triangles, corresponding sides are always in the same ratio.
Therefore, if triangle ABC is similar to triangle PQR then:
[tex]AB : PQ = BC : QR = AC : PR[/tex]
Substitute the side lengths into the ratio equation:
[tex]AB : PQ = BC : QR = AC : PR[/tex]
[tex]8 : 6 \;\;\;\:= \;\;12 : 9 \;\;\;\:= \;\;12 : 9[/tex]
Simplify each ratio by dividing all parts of the ratio by their highest common factor:
[tex]\dfrac{8}{2}:\dfrac{6}{2}=\dfrac{12}{3}:\dfrac{9}{3}=\dfrac{12}{3}:\dfrac{9}{3}[/tex]
[tex]4:3=4:3=4:3[/tex]
As the corresponding sides of triangles ABC and PQR are in the same ratio, this proves that the two triangles are similar.
4(1-x)^2+(1-x)+4= simplify your answer
Therefore, the simplified form of the expression 4(1 - x)^2 + (1 - x) + 4 is 4x^2 - 7x + 9.
To simplify the expression 4(1 - x)^2 + (1 - x) + 4, we'll expand the square and combine like terms.
Starting with the square term:
(1 - x)^2 = (1 - x)(1 - x) = 1 - 2x + x^2
Now, let's substitute the expanded square back into the expression:
4(1 - x)^2 + (1 - x) + 4 = 4(1 - 2x + x^2) + (1 - x) + 4
Distributing 4 to the terms within the parentheses:
= 4 - 8x + 4x^2 + 1 - x + 4
Combining like terms:
= 4x^2 - 7x + 9
For such more question on parentheses
https://brainly.com/question/172904
#SPJ8
An employee at a company is paid based on years of experience and years of education. Write the equation for their salary.
Salary, S, is 35,000 plus the product of 2,000 and years of experience, X, plus the product of 3,000 and years of education, D.
S=35,000x+2,000D
S=2,000x+3,000D
S=35,000+2,000x+3,000D
S+35,000=2,000x+3,000D
The compensation equation for the employee may be stated as follows:
[tex]\text{S}=35000+2000\text{x}+3000\text{D}[/tex]What is a equation?A equation is a mathematical statement that claims the equivalence of two expressions. Equations are used in mathematics, science, engineering, and many other professions to express connections between variables and to solve problems.
If s denotes income, x denotes years of experience, and d denotes years of education.
The employee's remuneration is computed as the basic wage of $35,000 + $2,000 for each year of experience plus $3,000 for each year of study. In deciding an employee's wage, this equation considers both their experience and education.
Therefore, [tex]\text{S}=35000+2000\text{x}+3000\text{D}[/tex] is the compensation equation for the employee.
To know more on equations, please refer to the link below:
https://brainly.com/question/29538993
help me please i would appreciate it so so much
Answer:
The given triangles APSR and APQR are congruent by S.A.S. criteria.
Step-by-step explanation:
The S.A.S. (Side-Angle-Side) congruence criteria states that two triangles are congruent if their corresponding two sides and included angles are congruent to one another's corresponding two sides and included angle.
Here, we can observe that both triangles share the same side AP.
PR and PQ on the side are congruent.
- Both triangles share Angle P.
The supplied triangles APSR and APQR are therefore congruent according to S.A.S. requirements.
so we can conclude: S.A.S. for the triangles being congruent.