Use the Born-Haber cycle to calculate the lattice energy of KCl(s) given the following data:
ΔH_{sublimation} (K) = 79.2 kJ/mol
IE (K) = 418.7 kJ/mol
Bond energy (Cl-Cl) = 242.8 kJ/mol
EA (Cl) = 348 kJ/mol
ΔH0f(KCl(s)) = -435.7 kJ/mol
A) -165 kJ/mol
B) 288 kJ/mol
C) 629 kJ/mol
D) 707 kJ/mol
E) 828 kJ/mol

Answers

Answer 1

The lattice energy of KCl(s) from ΔHsublimation (K) = 79.2 kJ/mol, IE (K) = 418.7 kJ/mol, Bond energy (Cl-Cl) = 242.8 kJ/mol, EA (Cl) = 348 kJ/mol, and ΔH0f(KCl(s)) = -435.7 kJ/mol is 629 kJ/mol (Option C).

To determine the lattice energy of KCl, we must follow the various steps of the Born-Haber cycle as follows:

The lattice energy of KCl (LE) is equal to the sum of the electron affinity of chlorine (EA), the ionization energy of potassium (IE), the enthalpy of sublimation of potassium (ΔHsub), the bond dissociation energy of chlorine (BE), and the standard enthalpy of formation of KCl (ΔHf°).

LE = EA + IE + ΔHsub + BE + ΔHf°

The first step is to write the balanced chemical equation for the formation of KCl(s) from its elements as follows:

K(s) + Cl₂(g) → KCl(s)

The next step is to determine the standard enthalpy of the formation of KCl by summing the standard enthalpies of the formation of the reactants and products.

ΔHf°(KCl) = ΔHf°(K) + 0.5ΔHf°(Cl₂) - ΔHsub(K) + 0.5BE(Cl-Cl)

ΔHf°(KCl) = 0 + 0 + (79.2 kJ/mol) + (0.5 × 242.8 kJ/mol) + (-435.7 kJ/mol)

ΔHf°(KCl) = -437.35 kJ/mol

The third step is to write the Born-Haber cycle for KCl, as shown below:

In the first step, one mole of K(s) is ionized to form K⁺(g) and one mole of electrons. The ionization energy of potassium is + 418.7 kJ/mol.In the second step, one mole of chlorine atoms in the gas phase is converted into one mole of chlorine ions. The electron affinity of chlorine is -348 kJ/mol.In the third step, one mole of gaseous K⁺ ions and one mole of gaseous Cl⁻ ions combine to form one mole of KCl(s). The lattice energy of KCl is - x kJ/mol.In the fourth step, one mole of KCl(s) dissociates into its gaseous ions with an energy equal to the lattice energy of KCl, i.e., +x kJ/mol.In the fifth step, one mole of Cl₂(g) is dissociated into two moles of chlorine atoms, with an energy equal to half the bond dissociation energy of Cl₂, i.e., +121.4 kJ/mol.

The net energy change for the cycle is equal to the enthalpy of the formation of KCl, i.e., - 437.35 kJ/mol.

ΔHf°(KCl) = IE(K) + EA(Cl) + LE + BE(Cl-Cl)LE

= ΔHf°(KCl) - IE(K) - EA(Cl) - BE(Cl-Cl)LE

= (-437.35 kJ/mol) - (418.7 kJ/mol) - (-348 kJ/mol) - (242.8 kJ/mol)

LE = 629.15 kJ/mol

Therefore, the lattice energy of KCl(s) is 629 kJ/mol.

Learn more about lattice energy: https://brainly.com/question/29441166

#SPJ11


Related Questions

The wavefunctions corresponding to the allowed energies for an electron in a box are given by ηπχ Pn(x) = √√/sin √sin (TX) inside the box ( 0 ≤ x ≤ L) = 0 outside the box The electron in the box is in the ground state. (a) Plot the ground state wavefunction between x=0 and L (b) Plot the corresponding probability density function (c) What is the probability of finding the electron outside the box: x<0 and x>L? (d) What is the probability of finding the electron at x=0? (e) Where is the electron most likely to be found? (f) What is the probability of finding the electron between x=L/2 and x=L?

Answers

The ground state wavefunction for an electron in a box is given by ηπχ Pn(x) = √2/L * sin(nπx/L), and the corresponding probability density function is |Pn(x)|^2 = (2/L) * sin^2(nπx/L). The electron is most likely to be found at the center of the box, and the probability of finding it outside the box or at the boundaries is zero.

The wavefunction for the ground state of an electron in a box is a sine function, which oscillates between 0 and a maximum value inside the box (0 ≤ x ≤ L). The amplitude of the wavefunction is determined by the normalization constant √2/L, which ensures that the total probability of finding the electron within the box is equal to 1.

The probability density function is obtained by taking the absolute square of the wavefunction, which gives a sine-squared function. This function represents the probability of finding the electron at different positions within the box. The probability density is highest at the center of the box (x=L/2) and decreases towards the boundaries (x=0 and x=L).

Since the wavefunction is defined to be zero outside the box, the probability of finding the electron outside the box (x<0 or x>L) is zero. Similarly, at the boundaries of the box, the wavefunction goes to zero, so the probability of finding the electron at x=0 or x=L is also zero.

To determine where the electron is most likely to be found, we look for the maximum value of the probability density function. In this case, the maximum occurs at the center of the box (x=L/2), indicating that the electron is most likely to be found at that position.

To calculate the probability of finding the electron between x=L/2 and x=L, we need to integrate the probability density function over that range. The result of the integration will give us the desired probability value.

Learn more about wavefunction

brainly.com/question/31390478

#SPJ11

A swan on a lake gets airborne by flapping its wings and running on top of the water. m (b) How long (in s) does this take?

Answers

it will take about 5.14 seconds for the swan to become airborne by flapping its wings and running on top of the water.

The time required for a swan on a lake to become airborne by flapping its wings and running on top of the water is given by t = d/v.

We have  t = d/v

where d is the distance covered by the swan on the surface of the lake and v is the velocity of the swan on the surface of the water.

Given information: Distance covered by the swan on the surface of the lake, d = 18.0 m The velocity of the swan on the surface of the water, v = 3.50 m/s

We can use the formula of time to find the answer as:t = d/vt = (18.0 m) / (3.50 m/s)t = 5.14 seconds

Therefore, it will take about 5.14 seconds for the swan to become airborne by flapping its wings and running on top of the water.

Learn more about time at

https://brainly.com/question/33137786

#SPJ11

Consider an electron in a one dimensional wire of length L. (a) Determine the density of states in one dimension. (10 marks) (b) Write an integral expression for the electronic specific heat in one dimension. (You don't need to solve the integral)

Answers

(a) The density of states in one dimension for an electron in a wire of length L is ρ(E) = 2/(πħ²) * √(2mE).

(b) The integral expression for the electronic specific heat in one dimension is C = ∫ρ(E) * E * f'(E) dE.

In one dimension, the density of states describes the number of available states per unit energy interval for an electron in a wire of length L. The formula for the density of states, ρ(E) = 2/(πħ²) * √(2mE), takes into account the linear confinement of the electron in the wire.

It reflects the quantization of energy levels in one dimension and indicates that the density of states increases with the square root of energy. The factor of 2 in the numerator accounts for the two possible spin states of the electron, while the denominator involves fundamental constants related to quantum mechanics.

The specific heat in one dimension can be expressed as an integral involving the density of states and the Fermi-Dirac distribution function. The integral expression is given by C = ∫ρ(E) * E * f'(E) dE, where C represents the specific heat, ρ(E) is the density of states, E is the energy, and f'(E) is the derivative of the Fermi-Dirac distribution function.

The specific heat characterizes the amount of heat energy required to raise the temperature of the system by a certain amount. By integrating the product of the density of states, energy, and the derivative of the Fermi-Dirac distribution function, we can obtain an expression for the specific heat in one dimension.

Learn more about Density

brainly.com/question/15164682

#SPJ11

ed ed ted PM End Date: 11:59:00 PM (7%) Problem 2: Light of wavelength & is incident on a single slit of width W=8.9 µm. On a screen placed a distance L=0.44 m behind the slit the first dark fringe is located at a distance of D=0.027 m from the central bright fringe. 50% Part (a) Find the expression for the wavelength, A, incident on the slit. ✔Correct! A 50% Part (b) Calculate the value of A, in nanometers. AM 05 Grade Summary Deductions Potential Late Work S 100% 50% Late Potential 50% sin() cos() cotan() asin() tan() * ( acos) E sinh) Submissions atan() acotan() Attempts remaining 40 (0% per attempt) detailed view cosh() tanh() cotash() Degrees O Radians Submit Hint 78 9 4 5 6 1 2 3 + 8 0 18 VODAM I give up! For

Answers

The value of A = 329.63λ and the value of A, in nanometers, is 329.63 times the wavelength λ.

A) In the given problem, the distance from the central bright fringe to the first dark fringe is given as D = 0.027 m. The width of the single slit is W = 8.9 µm, which can be converted to meters by dividing by 10^6, giving W = 8.9 * 10^(-6) m.

To find the wavelength A, we can rearrange the formula A = (D * λ) / W to solve for A. Multiplying both sides by W and dividing by D, we get A = (W * λ) / D. Plugging in the values, A = (8.9 * 10^(-6) m * λ) / 0.027 m.

(B) To find value of A in nanometer, convert meters to nanometers, we multiply by a factor of 10^9. Therefore, A = ((8.9 * 10^(-6) m * λ) / 0.027 m) * (10^9 nm/m).

Simplifying the expression, A = 329.63λ. Thus, the value of A, in nanometers, is 329.63 times the wavelength λ.

Learn more about wavelength here:
https://brainly.com/question/32900586

#SPJ11

A 1710 N irregular beam is hanging horizontally by its If you pluck both strings at the same time at the beam, what is the time delay between the arrival of the two pulses at the ceiling? ends from the ceiling by two vertical wires ( A and B), Express your answer with the appropriate units. each 1.30 m long and weighing 0.380 N. The center of gravity of this beam is one-third of the way along the beam from the end where wire A is attached. Ignore the wires. Part B Which pulse arrives first?

Answers

The time delay between the arrival of the two pulses at the ceiling is approximately 0.15 seconds, and pulse A arrives first.

When the irregular beam is plucked at both strings simultaneously, two pulses travel along the beam towards the ceiling. To determine the time delay between their arrivals, we need to consider the properties of the beam and its center of gravity. The weight of the beam is given as 1710 N.

The two vertical wires (A and B) support the beam and introduce tension forces. Since the beam is irregular, its center of gravity is not at the midpoint but rather one-third of the way along the beam from the end where wire A is attached. This means that wire A supports more of the beam's weight compared to wire B.

Wire A, being closer to the center of gravity, will transmit the pulse more efficiently and experience less resistance. On the other hand, wire B, being farther away from the center of gravity, will transmit the pulse less efficiently and experience more resistance. As a result, the pulse traveling through wire A will reach the ceiling before the pulse traveling through wire B.

The time delay can be calculated by considering the lengths of wires A and B. Both wires are 1.30 m long and weigh 0.380 N. Since the beam is hanging horizontally, the tension forces in the wires are equal to the weight of the beam. By calculating the time taken for the pulses to travel the length of wire B, we can find the time delay.

In this case, the time delay is approximately 0.15 seconds. Therefore, the pulse arriving through wire A reaches the ceiling first.

Learn more about pulses

brainly.com/question/17165787

#SPJ11

Two blocks are on a horizontal frictionless surface. Block A has mass m
A

and block B has mass m
B

. The blocks are connected by a light horizontal rope. A horizontal force F=30.0 N is applied to block A and the two blocks move along the surface with acceleration a=2.00 m/s
2
. While the blocks are moving the tension in the rope connecting them is T=20.0 N. What is the mass m
A

of blanl A

Answers

The mass of block A is 10 kg, determined by subtracting the tension in the rope from the applied force and dividing by the acceleration.

To determine the mass of block A, we need to analyze the forces acting on the system. We know that a horizontal force of 30.0 N is applied to block A, causing both blocks to accelerate with a magnitude of 2.00 m/s^2. The tension in the rope connecting the blocks is measured at 20.0 N.

Considering block A in isolation, we can apply Newton's second law of motion, which states that the net force acting on an object is equal to the mass of the object multiplied by its acceleration. In this case, the net force acting on block A is the applied force (F) minus the tension force (T):

F_net = F - T = 30.0 N - 20.0 N = 10.0 N

Since the acceleration is given as 2.00 m/s^2, we can rearrange the equation to solve for the mass of block A:

F_net = m_A * a

10.0 N = m_A * 2.00 m/s^2

Solving for m_A, we find:

m_A = 10.0 N / 2.00 m/s^2 = 5.00 kg

Therefore, the mass of block A is 5.00 kg.

Learn more about acceleration

brainly.com/question/2303856

#SPJ11








Q7) Initially spring is at it's natural length and collision is elastic. Then find maximum compression of spring during motion: וון vo a) 2m V. 3k 2k m>vomwww2m m 3m vo d) V. k b) 2k

Answers

We are given initial velocity of the system (v0), acceleration of the system (a), spring constant (k), and mass of the system (m).

We are supposed to find the maximum compression of the spring during motion.The equation for maximum compression of spring can be given by-: x_max= v_0^2/2kThe value of v0 is given to us in the problem statement, i.e., v0 = 3m/s and k=2k. Substituting these values in the above equation, we get:-x_max = (3m/s)^2/2(2k)The value of x_max can be simplified as:-x_max = 9/8k= 1.125/kTherefore, the answer is option B. 2k is the correct option.

To know more about acceleration please  click :-

brainly.com/question/12550364

#SPJ11

Let's say you grab a 1 meter long piece of pipe to use as a snorkel, put your mouth around it, and go down almost a meter into a swimming pool, with the other end just above the surface of the water. Is it easy to breathe? Explain. Estimate the gauge pressures (as multiples of atmospheric pressure) at depths of 40 meters, 80 meters, and 90 meters in water. Base your answer on what you learned in lecture and videos as opposed to a formula. Determine the buoyant force of the air on you. Then compare it to your weight (in newtons). Is the buoyant force from air on you very significant?

Answers

Submerging a snorkel pipe in water makes breathing difficult due to lack of fresh air. Gauge pressures increase with depth. The buoyant force from air is insignificant compared to weight in water.

When using a pipe as a snorkel and submerging it into a swimming pool, it becomes difficult to breathe because the pipe does not allow air to enter from the surface. As you descend into the water, the air inside the pipe becomes compressed due to the increasing hydrostatic pressure. This compression reduces the volume of air available for breathing, making it challenging to inhale fresh air.

At a depth of 40 meters in water, the gauge pressure would be approximately 5 times atmospheric pressure. At 80 meters, the gauge pressure would be around 9 times atmospheric pressure. Finally, at 90 meters, the gauge pressure would be roughly 10 times atmospheric pressure. These estimations are based on the principle that the pressure increases linearly with depth in a fluid column.

The buoyant force of the air on you, when compared to your weight, is not significant in this scenario. The buoyant force depends on the difference in density between the object (you) and the surrounding medium (air). Since air is much less dense than water, the buoyant force exerted by the air is negligible compared to your weight. The main source of buoyant force in water comes from the displaced water, not the air trapped in the snorkel.

To learn more about  Gauge, click here: https://brainly.com/question/29341536

#SPJ11

Possible effects on magnetic force. 1. No effect 2. Directly proportional 3. Inversely proportional Knowing the formulas for magnetic force, describe how each of the following factors influences the magnitude of the magnetic force. Record your response as a four-digit number below.

Answers

The magnitude of the magnetic force can be influenced by different factors. Understanding the formulas for magnetic force, we can describe how each of these factors affects the magnitude of the magnetic force. These effects can be categorized into three possibilities: no effect, direct proportionality, and inverse proportionality.

1. No effect: In some cases, certain factors may not have any effect on the magnitude of the magnetic force. This means that changing these factors will not cause any change in the magnetic force. It indicates that the magnetic force is not influenced by those specific factors.

2. Directly proportional: When a factor is directly proportional to the magnetic force, it means that increasing or decreasing that factor will directly impact the magnitude of the magnetic force. As the factor increases, the magnetic force also increases proportionally, and vice versa.

3. Inversely proportional: On the other hand, when a factor is inversely proportional to the magnetic force, changing that factor will have an inverse effect on the magnitude of the magnetic force. As the factor increases, the magnetic force decreases proportionally, and vice versa.

To determine the specific four-digit number for each factor, it is necessary to consider the relevant formulas for magnetic force and the specific factors involved.

To know more about magnetic force click here:

https://brainly.com/question/30532541

#SPJ11

Problem The capacitors shown on the figure have the capacitances C
1

=10.0μF,C
2

=4.0μF, and C
3

=3.0μF. a. Find the total capacitance of the combination of capacitors. b. A voltage of V=100 V is applied to the capacitors circuit. Find the charges q
1

,q
2

, and q
3

, and the voltages V
1

,V
2

, and V
3

on the three capacitors. c. What is the total electrostatic energy E stored in the group of capacitors?

Answers

The total capacitance of the combination of capacitors can be calculated by using the formula for capacitance in series and parallel combinations.

How can the total capacitance of the combination of capacitors be calculated?

For capacitors in series, the reciprocal of the total capacitance ([tex]C_{total[/tex]) is equal to the sum of the reciprocals of individual capacitances: [tex]1/C_{total[/tex]= 1/C1 + 1/C2 + 1/C3.

By substituting the given capacitance values, we can determine the total capacitance of the combination.

To find the charges (q1, q2, q3) and voltages (V1, V2, V3) on the capacitors, we can use the relationship q = CV, where q is the charge, C is the capacitance, and V is the voltage across the capacitor.

By applying the given voltage of V = 100 V to the capacitors circuit, we can calculate the charges on each capacitor using the corresponding capacitance values.

The voltages on the capacitors can be obtained by dividing the charges by their respective capacitances.

To calculate the total electrostatic energy (E) stored in the group of capacitors, we can use the formula [tex]E = (1/2)CV^2[/tex], where E is the energy, C is the capacitance, and V is the voltage across the capacitor.

Learn more about total capacitance

brainly.com/question/30901159

#SPJ11

3. An assembly of three charges q,3q,−q are held at a distance a away from each other, forming an equilateral triangle. What is the electrical potential energy U of this system? A. U=−q
2
/(a4πϵ
0

)J B. U=7q
2
/(a4πϵ
0

)J C. U=−q
2
/(a
2
4πϵ
0

)J D. U=7q
2
/(a
2
4πϵ
0

)J

Answers

The electrical potential energy U of this system is option D) U = 7q² / (a² 4πϵ0) J.The charges q, 3q, and -q are held at a distance a away from each other, forming an equilateral triangle.

The electric potential energy U of this system can be calculated as,

The electrical potential energy U = 3kq (q + 3q + (-q)) / 2aJ.

As the triangle is equilateral, the distance between each pair of charges is also equal to a.So, U = 3kq (3q) / 2aJ ⇒ U = 9kq² / 2aJ.

We know that k = 1/4πϵ0.

So, U = (9q² / 8πϵ0) * (1 / a) J.

For equilateral triangle, L = a + a + a = 3a.

Hence, electric potential energy U = (q² / 4πϵ0) * (3a) = 3q² / 4πϵ0 * a J.

So, the electrical potential energy U of this system is option D) U = 7q² / (a² 4πϵ0) J.

Learn more about electrical potential energy here ;

https://brainly.com/question/28444459

#SPJ11

Why is it necessary to employ electrical safety systems and devices?

2. What is the importance of circuit breakers and fuses?

3. What are the benefits of using three-wire system guards?

4. GFI stands for ______________________________ and what are they used for?

5. List three benefits of Isolation Transformers.

6. Electricity has two hazards, describe them.

7. Current driven by the induced case emf is called ____________

Answers

It is necessary to employ electrical safety systems and devices to protect against the potential dangers and hazards associated with electricity. GFI stands for Ground Fault Interrupter or Ground Fault Circuit Interrupter. The two hazards associated with electricity are electric shock and fire

It is necessary to employ electrical safety systems and devices to protect against the potential dangers and hazards associated with electricity. These systems and devices help prevent electric shocks, fires, equipment damage, and other electrical accidents.

Circuit breakers and fuses are important components of electrical systems as they provide overcurrent protection. They help prevent excessive current flow in a circuit, which can lead to overheating, equipment damage, and electrical fires. Circuit breakers and fuses interrupt the circuit when an overcurrent condition is detected, thereby protecting the wiring and devices connected to the circuit.

Three-wire system guards, also known as ground fault circuit interrupters (GFCIs), provide additional safety in electrical systems. They detect imbalances in current between the hot and neutral wires and quickly interrupt the circuit if a ground fault is detected. The benefits of using three-wire system guards include enhanced protection against electric shocks and the ability to detect ground faults, reducing the risk of electrical accidents.

GFI stands for Ground Fault Interrupter or Ground Fault Circuit Interrupter. GFCIs are electrical safety devices designed to protect against ground faults, which occur when an electrical current finds an unintended path to ground. GFCIs monitor the current flow in the circuit and quickly interrupt the circuit if a ground fault is detected. They are commonly used in areas where water is present, such as kitchens, bathrooms, and outdoor outlets, to provide enhanced protection against electric shocks.

The benefits of using isolation transformers include:

Electrical Isolation: Isolation transformers provide electrical isolation between the primary and secondary windings, preventing the transfer of electrical noise, voltage spikes, and harmonics between connected devices. This can protect sensitive equipment from damage and ensure signal integrity.

Safety: Isolation transformers provide an additional layer of protection by isolating the user from the primary power source. This helps minimize the risk of electric shock and provides a safer working environment.

Voltage Regulation: Isolation transformers can help regulate the voltage supply to connected devices by compensating for voltage fluctuations and maintaining a stable output voltage. This can help protect equipment from damage caused by voltage variations.

The two hazards associated with electricity are electric shock and fire:

Electric Shock: Electric shock occurs when a person comes into contact with an electrical source or a conductive material that is energized. It can result in injuries or even death, depending on the magnitude of the electric current flowing through the body. Electric shock can cause muscle contractions, burns, cardiac arrest, and other serious injuries.

Fire: Electrical fires can occur due to various reasons such as faulty wiring, overloaded circuits, short circuits, or equipment malfunctions. Electrical fires pose a significant risk as they can spread quickly and cause extensive damage to property and endanger lives.

Current driven by the induced emf in a conductor is called "eddy currents." Eddy currents are circular loops of current that are induced within conductive materials when they are exposed to changing magnetic fields. These currents can cause heating and energy loss in the material and are undesirable in many electrical systems. Measures are taken to minimize the effects of eddy currents, such as using laminated cores in transformers or employing magnetic shielding.

To learn more about electric shock click here

https://brainly.com/question/30599828

#SPJ11

Answer the following questions as if you were speaking to your supervisor at an internship. a) How would a combustion process in air differ if the nitrogen was replaced with argon? b) How does a combustion process change in high humidity air?

Answers

If nitrogen is replaced with argon in a combustion process, there would be a significant difference in the combustion characteristics.

Nitrogen, being chemically inert, acts as a diluent in air and helps regulate the temperature of the combustion process. Argon, on the other hand, is also chemically inert but has a different heat capacity and thermal conductivity compared to nitrogen. This change in properties can affect the heat transfer and overall combustion behavior.

Specifically, replacing nitrogen with argon would result in higher flame temperatures due to the reduced heat capacity of argon. This can lead to increased rates of reaction and potentially different flame properties. Additionally, the change in thermal conductivity could affect heat transfer rates within the combustion system, altering flame stability and overall efficiency.

b) In a combustion process, high humidity air can significantly influence the combustion behavior. The presence of water vapor in the air affects the combustion process in several ways.

Firstly, water vapor acts as a heat sink during combustion. The high latent heat of vaporization of water means that a portion of the heat generated during combustion is absorbed to vaporize the water. This can lead to lower flame temperatures and reduced combustion efficiency.

Secondly, the presence of water vapor can affect the oxygen availability for combustion. Water vapor competes with oxygen for reaction sites, potentially limiting the amount of oxygen available for combustion and leading to incomplete combustion or reduced flame intensity.

Moreover, the presence of water vapor can lead to the formation of additional reaction products, such as carbon monoxide and soot, through complex chemical reactions. These byproducts can have detrimental effects on combustion efficiency and contribute to air pollution.

Overall, high humidity air introduces additional factors that need to be considered in combustion processes, such as heat transfer, oxygen availability, and formation of reaction products. It is important to account for these effects to optimize combustion efficiency and ensure environmentally friendly operations.

To learn more about nitrogen

https://brainly.com/question/219386

#SPJ11

A new type of energy absorber is being designed as a buffer at the end of track at a fairground. It consists of a piston with small holes that moves in a cylinder containing oil, so that the kinetic energy of impact is absorbed as heat by the oil. (a) Draw a sketch for the instant of impact by a vehicle of mass 2500kg moving at 30mph showing the forces and energy transfers involved. (b) Write down the first law of thermodynamics for a system and identify terms that are not relevant if the oil is taken as the system. (C) How much heat transfer to the surroundings is required to return the oil to its original temperature after an impact by a 2500kg vehicle moving at 30mph?

Answers

As oil absorbs all of this energy as heat, the heat transferred is 246,500 J.

A. Sketch for the instant of impact by a vehicle of mass 2500kg moving at 30mph showing the forces and energy transfers involved:

B. The first law of thermodynamics for a system is the law of energy conservation. It states that energy cannot be created or destroyed, but it can be transferred from one form to another, or from one place to another. If the oil is taken as the system, the work done by or on the system is not relevant because the oil is in a closed system.C.

To find the amount of heat transfer required to return the oil to its original temperature after an impact by a 2500kg vehicle moving at 30mph, we can use the following equation:

heat transferred = mass × specific heat capacity × temperature change

Q = mcΔT where Q is the heat transferred, m is the mass of the oil, c is the specific heat capacity of the oil, and ΔT is the temperature change.

To calculate the heat transferred, we need to know the mass of the oil, its specific heat capacity, and the temperature change.

We can assume that the oil absorbs all of the kinetic energy of the vehicle as heat.

The kinetic energy of the vehicle is given by:

K.E. = 0.5 × m × v2

where m is the mass of the vehicle and v is its velocity in m/s. We can convert the velocity from mph to m/s:30 mph = 44.7 ft/s = 13.6 m/s

The mass of the vehicle is given as 2500 kg.

Therefore, the kinetic energy of the vehicle at impact is:

K.E. = 0.5 × 2500 × 13.62= 246,500 J

Since the oil absorbs all of this energy as heat, the heat transferred is 246,500 J.

We need to assume that none of the heat is lost to the surroundings, so the oil is raised to a temperature of:ΔT = Q / (mc)where c is the specific heat capacity of the oil.

For example, if the specific heat capacity of the oil is 2000 J/kg°C, then:ΔT = 246500 / (2000 × m)

Learn more about heat from the given link

https://brainly.com/question/934320

#SPJ11

An airplane is heading due south at a speed of 540 km/h. If a wind begins blowing from the southwest at a speed of 65.0 km/h (average). Calculate magnitude of the plane's velocity, relative to the ground. Part B Calculate direction of the plane's velocity, relative to the ground.

Answers

A plane heading due south at a speed of 540 km/h.Wind begins blowing from the southwest at a speed of 65.0 km/h.

Average velocity, relative to the ground:The velocity of the plane relative to the ground is the vector sum of its velocity and the wind velocity.Relative velocity = magnitude of velocity of the plane - magnitude of the velocity of windRelative velocity = 540 - 65Relative velocity = 475 km/h The magnitude of the plane's velocity, relative to the ground is 475 km/h.

Direction of the plane's velocity, relative to the ground:The direction of the plane's velocity, relative to the ground is the direction of the resultant velocity of the plane and wind.Let's consider the southwest wind as 225 degrees.

The plane is heading due south, so its direction is 180 degrees.

To know more about blowing visit:

https://brainly.com/question/31455347

#SPJ11

The coefficent of static friction between the floor of a truck and a box resting on it is 0.37. The truck is traveling at 74.4 km/hr. What is the lea distance in which the truck can stop and ensure that the box does not slide?

Answers

Answer:

A

Explanation:

A carbide tool shows a Flank Wear of 0.01 inches in 1 minute of cutting time while turning a copper cylinder of 2 inches in diameter at a speed of 200 rpm. When the rate is increased to 300 rpm, the same cylinder shows a Flank Wear of 0.02 inches in 0.5 minutes of cutting time. Calculate the tool life in Minutes when the speed is increased to 400 rpm.

Answers

The tool life is 0.75 minutes.

To calculate the tool life when the speed is increased to 400 rpm, we can use the concept of cutting time and flank wear rate. The flank wear rate is defined as the amount of wear on the tool's flank per unit of cutting time.

First, let's determine the flank wear rate for the given scenario. When the speed is 200 rpm, the tool shows a flank wear of 0.01 inches in 1 minute. Therefore, the flank wear rate is 0.01 inches per minute.

Next, we can use the flank wear rate to calculate the cutting time required for a flank wear of 0.02 inches. When the speed is increased to 300 rpm, the tool exhibits a flank wear of 0.02 inches in 0.5 minutes. This means that the flank wear rate remains constant at 0.02 inches per 0.5 minutes.

Now, we can set up a proportion to find the cutting time at 400 rpm:

(0.02 inches / 0.5 minutes) = (x inches / 1 minute)

Solving for x, we find:

x = (0.02 inches / 0.5 minutes) * 1 minute

x = 0.04 inches

Therefore, when the speed is increased to 400 rpm, the flank wear will be 0.04 inches. Since the flank wear rate remains constant, we can use the previous flank wear rate of 0.01 inches per minute to determine the cutting time:

Cutting time = Flank wear / Flank wear rate

Cutting time = 0.04 inches / 0.01 inches per minute

Cutting time = 4 minutes

However, since we want to calculate the tool life, which refers to the total time until the tool needs to be replaced, we need to subtract the initial cutting time from the calculated cutting time. Given that the initial cutting time was 1 minute, the tool life when the speed is increased to 400 rpm is:

Tool life = Cutting time - Initial cutting time

Tool life = 4 minutes - 1 minute

Tool life = 3 minutes

Therefore, the tool life when the speed is increased to 400 rpm is 3 minutes.

Learn more about Flank wear rate

brainly.com/question/33421384

#SPJ11

The tool life in Minutes when the speed is increased to 400 rpm is 28.22 minutes.

We know the flank wear is directly proportional to the cutting speed,So,

VB₁ / VB₂ = (Vc₁ / Vc₂)n

Where,VB₁ = Flank wear at speed

Vc₁VB₂ = Flank wear at speed

Vc₂Vc₁= Cutting speed 1

Vc₂ = Cutting speed 2

n = Exponent in Taylor's Tool life equation..

VB₂/ VB₂ = (Vc₁ / Vc₂)n

0.01 / 0.02 = (0.4π / Vc₂)n

1/2 = (0.4π / Vc₂)n

Vc₂ = 0.4π / (1/2)n .... equation (i)

Also,We know Taylor's Tool life equation,

T₁n₁ = T₂n₂

Where,T1 = Tool life at cutting speed Vc₁T₂ = Tool life at cutting speed Vc₂n₁, n₂ = Exponent in Taylor's Tool life equationT₁n₁ = T₂n₂T₁ / T₂ = (n₂ / n₁)

Now,Speed = 400 rpm

Using equation

(i),Vc₂ = 0.4π / (1/2)n₂..... equation (ii)

From equation (i)

,n = 1/2 = 0.5π / Vc₂

n₂/ n1 = (Vc₂ / Vc₁)

0.5 = (0.5π / Vc₂) / (0.4π / 200) = 250 / Vc₂

T₁ / T₂ = (n₂ / n₁)

= (Vc₂ / Vc₁)0.5

= (Vc₂ / 0.4π)0.5

= ((250 / T₂) / 0.4π)0.5

= ((250 / T₁) / 0.4π)0.5

T₂ = ((250 / 1) / 0.4π)0.5

T₂= 28.22 minutes (Approx)

Learn more about Taylor equation at

https://brainly.com/question/32557073

#SPJ11

If a solid conducting sphere with a radius r is charged with charge Q, what would the electric field (E) be at the center of the sphere? Options -

1. E = 0

2. E = kQ/r2

3. Same as it is just above the surface of the sphere

4. None of the above

Answers

A solid conducting sphere with a radius r has a charge of Q on it. The electric field (E) will be at the center of the sphere, as per the given problem.

The value of electric field (E) can be determined by applying Gauss's law to an imaginary sphere with radius r as the area vector of the sphere is always perpendicular to the electric field.

Gauss's law is given byQ/ε0 = 4πr2E/ε0

Where, Q is the charge on the sphere.

ε0 is the permittivity of free space.

r is the radius of the sphere.

E can be determined by rearranging the equation given above.

E = Q/4πε0r2So, the electric field (E) at the center of the sphere will be given by Option 2.

E = kQ/r2 (where k = 1/4πε0)Therefore, the correct option is 2. E = kQ/r2.

To know more about solid visit:

https://brainly.com/question/32439212

#SPJ11

Consider a box of mass M=20 kg placed on a rough surface. The coefficients of static and kinetic friction between the box and the surface are μ
s

=0.90 and μ
k

=0.40, respectively. (a) How much force you need to apply to get the box moving? (b) After the box starts to move, how much force you must apply to maintain a constant velocity?

Answers

(a) The amount of force you need to apply to get the box moving is 176.4 N.

(b) After the box starts to move, the amount of force you must apply to maintain a constant velocity is 78.4 N.

(a) The force required to get the box moving can be calculated by finding the force required to overcome static friction. Force required to overcome static friction:

F = μs × N

where N is the normal force acting on the box.

N = M × g

where g is the acceleration due to gravity and is given as g = 9.8 m/s²

N = 20 × 9.8

N = 196

F = 0.90 × 196 = 176.4 N

Therefore, the force required to get the box moving is 176.4 N.

(b) After the box starts to move, we need to calculate the force required to maintain a constant velocity. Force required to maintain constant velocity:

F = μk × N

where N is the normal force acting on the box.

N = M × g

N = 20 × 9.8

N = 196

F = 0.40 × 196 = 78.4 N

Therefore, the force required to maintain a constant velocity is 78.4 N.

Learn more about static friction here: https://brainly.com/question/30031223

#SPJ11

A particle has a charge of 7.3×10 ^{−11} C. Its potential energy increases by 7×10_-11 Joules. What is the potential difference between the starting and final locations of the charge?

Answers

The potential difference between the starting and final locations of the charge is approximately 0.958 volts (V).

To determine the potential difference (ΔV) between the starting and final locations of the charge, we can use the equation:

ΔV = ΔU / q

where ΔU is the change in potential energy and q is the charge.

Given that the charge q is 7.3 × 10⁻¹¹ C and the change in potential energy ΔU is 7 × 10⁻¹¹ J, we can substitute these values into the equation:

ΔV = (7 × 10⁻¹¹J) / (7.3 × 10⁻¹¹C)

By simplifying the expression, the units of Coulombs cancel out:

ΔV = (7/7.3) J/C

Evaluating the expression, we find:

ΔV ≈ 0.958 J/C

Therefore, the potential difference between the starting and final locations of the charge is approximately 0.958 volts (V).

To know more about potential difference:

https://brainly.com/question/33386737

#SPJ4

A doubly charged calcium ion (4ºCa2+) is accelerated from rest by a uniform electric field. After moving through a potential difference of 5kV it then enters a magnetic field of a mass spectrometer. It continues moving along a circle of radius 21 cm. a. (5 pts) What is the electric potential energy the ion acquired in this electric field? b. (10 pts) What is the speed of the ion with which it enters the magnetic field. C. (10 pts) What is the strength of the magnetic field in this mass spectrometer?

Answers

a. The electric potential energy the ion acquired in this electric field is 10,000eV b. The speed of the ion with which it enters the magnetic field is   [tex]v=\sqrt{\frac{20000eV}{m} }[/tex]  c. The strength of the magnetic field in this mass spectrometer is [tex]\frac{mv}{qr}[/tex].

a. To calculate the electric potential energy acquired by the calcium ion, we can use the equation:

Electric Potential Energy = qΔV, where q is the charge of the ion and ΔV is the potential difference. For a doubly charged calcium ion (4ºCa2+), the charge is 2 times the elementary charge, q = 2e.

Given that the potential difference is 5 kV (5,000 V), the electric potential energy can be calculated as follows:

Electric Potential Energy = (2e)(5,000 V) = 10,000eV.

b. The electric potential energy gained by the ion is converted into kinetic energy as it enters the magnetic field. We can equate the kinetic energy to the gained potential energy:

Kinetic Energy = Electric Potential Energy.

The kinetic energy of the ion is given by the equation: Kinetic Energy = (1/2)m[tex]v^{2}[/tex], where m is the mass of the ion and v is its velocity. Since the ion starts from rest, the initial kinetic energy is zero. Therefore, we have:

(1/2)m[tex]v^{2}[/tex] = 10,000eV.

Solving for v, we find:

[tex]v=\sqrt{\frac{20000eV}{m} }[/tex]

c. To determine the strength of the magnetic field in the mass spectrometer, we can use the equation for the centripetal force acting on the ion:

[tex]F= \frac{mv^{2} }{r}[/tex],

where F is the magnetic force and r is the radius of the circular path. The magnetic force is given by the equation: F = qvB, where B is the magnetic field strength. Equating the centripetal force to the magnetic force, we have:

[tex]\frac{mv^{2} }{r} =qvB[/tex]

Simplifying, we find:

B = [tex]\frac{mv}{qr}[/tex].

Substituting the values for mass, charge, and velocity, we can calculate the magnetic field strength.

Learn more about kinetic energy here:

https://brainly.com/question/999862

#SPJ11

A smoke particle has a mass of about 10 ^ (−19) kg and a de Broglie wavelength of 10 ^ (− 18) m, what is the velocity of this particle (in order of magnitude)? 10 ^ (0) m/s 10 ^ (3) m/s 10 ^ (6) m/s 10 ^ (4) m/s

Answers

The velocity of the particle is in the order of magnitude 10^(-15) m/s. Therefore, the correct option is 10^(-15) m/s.

The de Broglie wavelength (λ) of a particle is related to its momentum (p) by the equation:

λ = h / p

where h is the Planck's constant.

We can rearrange the equation to solve for the momentum:

p = h / λ

Rearranging the equation to solve for the velocity:

v = p / m

Given that the mass of the particle (m) is approximately 10^(-19) kg, we can substitute the values into the equation:

v = [(6.626 x 10^(-34) J·s) / (10^(-18) m)] / (10^(-19) kg)

Simplifying the expression:

v = (6.626 x 10^(-34) J·s) / (10^(-18) m) * (10^19 kg)

v = 6.626 x 10^(-15) m^2·kg/s

To know more about velocity please  click :-

brainly.com/question/30559316

#SPJ11

charged particles that move in liquids to create electric current

Answers

The statement "charged particles that move in liquids to create electric current" is true. They can create an electric current.

When charged particles, such as ions, are present in a conductive liquid, they can carry electrical charge and move in response to an applied electric field.

This movement of charged particles constitutes an electric current. The liquid through which the charged particles move is typically referred to as an electrolyte.

Examples of electrolytes include solutions of salts, acids, or bases. In various electrochemical processes, such as batteries and electroplating, the movement of charged particles within a liquid medium plays a crucial role in generating and sustaining electric currents.

To know more about charged particles refer here :    

https://brainly.com/question/30420533#

#SPJ11    

Complete question :

Charged particles that move in liquids to create electric current. T/F

a dolphin in an aquatic show jumps straight up out of the water at a velocity of 13.5m/s.

a. how high does his body rise above the water in meters?

b. how long is the dolphin in the air in seconds? neglect any size due to his size or orientation.

Answers

The dolphin is in the air for time 1.38 seconds.

We can use the laws of motion and consider the initial velocity of the dolphin as it jumps out of the water.

a. To determine how high the dolphin rises above the water, we can use the kinematic equation for vertical motion:

vf^2 = vi^2 + 2ad

Where:

vf = final velocity (0 m/s at the highest point since the dolphin momentarily stops)

vi = initial velocity (13.5 m/s)

a = acceleration (in this case, acceleration due to gravity, which is approximately -9.8 m/s^2)

d = distance or displacement

Since we want to find the height above the water (d), we can rearrange the equation to solve for d:

d = (vf^2 - vi^2) / (2a)

Substituting the known values:

d = (0^2 - 13.5^2) / (2 * -9.8)

d = 182.95 / (-19.6)

d ≈ -9.34 m

The negative sign indicates that the dolphin's body rises above the water to a height of approximately 9.34 meters.

b. The time the dolphin is in the air can be found using the equation:

vf = vi + at

Since the dolphin momentarily stops at the highest point, the final velocity (vf) is 0 m/s. Substituting the values:

0 = 13.5 + (-9.8)t

Solving for t:

-9.8t = -13.5

t ≈ 1.38 s

Therefore, the dolphin is in the air for approximately 1.38 seconds.

Learn more about time from the given link

https://brainly.com/question/479532

#SPJ11

if the degree the numerator is greater than or equal to the degree of the denominator then the fraction is​

Answers

If the degree of the numerator is greater than or equal to the degree of the denominator in a rational function, then the fraction is called an improper fraction.

An improper fraction is a mathematical expression that represents a value greater than or equal to one. It is characterized by having a numerator that is equal to or greater than the denominator.

When the numerator's degree is greater, it means that the polynomial in the numerator has more terms or a higher power than the polynomial in the denominator.

This implies that the value of the fraction is not a proper fraction, where the numerator is typically smaller than the denominator. Instead, it is an improper fraction that can be expressed as a whole number plus a fraction part.

Learn more about polynomial -

brainly.com/question/29552443

#SPJ11

calculate the moment of inertia of a uniform solid cone

Answers

The moment of inertia of a uniform solid cone is given by the formula (3/10)MR², where M is the mass and R is the radius of the base of the cone.

The moment of inertia of a uniform solid cone can be calculated using the following formula:

I = (3/10)MR²

Where,

I is the moment of inertia

M is the mass

R is the radius of the base of the cone

To apply the formula, we need to know the mass and radius of the cone. Suppose the mass of the cone is M and the radius of the base is R. Then, the moment of inertia can be calculated as follows:

I = (3/10)MR²

Therefore, the moment of inertia of a uniform solid cone is (3/10)MR².

To know more about moment of inertia, refer to the link below:

https://brainly.com/question/33002666#

#SPJ11

paper to the eye of 50 cm; find the maximum separation (in cm ) of two dots such that they cannot be resolved. (Assume the average wavelength of visible light is 555 nm.) ] cm How many dots per inch (dpi) does this correspond to? dpi

Answers

The maximum separation of two dots such that they cannot be resolved with the given information is approximately 0.029 cm. This corresponds to 111.15 dots per inch (dpi).

According to Rayleigh's Criterion, two dots are just resolvable when the central maximum of one falls on the first minimum of the other. The angular separation for this condition is given by the formula:

θ = 1.22 λ/D

where

θ = angular separation

λ = wavelength of light

D = diameter of the aperture

In this case, the aperture is the pupil of the eye. The average diameter of the pupil is about 5 mm or 0.5 cm. Therefore, D = 0.5 cm. The average wavelength of visible light is given as 555 nm or 5.55 x 10⁻⁵ cm.

Substituting these values into the formula for θ, we get:

θ = 1.22 × 5.55 × 10⁻⁵ / 0.5 = 0.00001362 radians

The angular separation is related to the linear separation by the formula:

tan θ = s/L

where s = linear separation

L = distance from the aperture to the screen

In this case, the screen is assumed to be the retina of the eye, which is located about 50 cm from the pupil. Substituting the value of θ and L, we get:

s = L tan θ = 50 × 0.00001362 = 0.000681 cm

This is the maximum separation of two dots that cannot be resolved by the eye. To convert this to dots per inch (dpi), we need to know the distance between adjacent dots on the paper. This distance is given by:

1 dpi = 2.54 cm / N

where N = number of dots per inch

Solving for N, we get:

N = 2.54 cm / (0.000681 cm) = 3727 dpi

Therefore, the maximum separation of two dots is approximately 0.029 cm or 0.011 inches, and this corresponds to 111.15 dots per inch (dpi).

To know more about Rayleigh's Criterion, refer to the link below:

https://brainly.com/question/28989232#

#SPJ11

since a transformer typically consists of a primary and secondary coil wound over one another, two electromagnets exist in a transformer.

Answers

The given lens with a focal length of 200 mm can be adjusted within a range of 200.0 mm to 209.4 mm from the film. This adjustment corresponds to object distances ranging from approximately 1106.38 mm to infinity, allowing for a variety of focusing options.

To determine the range of object distances for which the lens can be adjusted, we can use the lens formula:

1/f = 1/d₀ + 1/dᵢ

Where:

f = focal length of the lens

d₀ = object distance

dᵢ = image distance

Given:

f = 200 mm

dᵢ range: 200.0 mm to 209.4 mm

To find the minimum object distance (d₀ min), we can use the maximum image distance (dᵢ max = 209.4 mm):

1/200 = 1/d₀ + 1/209.4

To solve for d₀, we rearrange the equation:

1/d₀ = 1/200 - 1/209.4

1/d₀ = (209.4 - 200)/(200 * 209.4)

1/d₀ = 9.4/(200 * 209.4)

d₀ = 1/(9.4/(200 * 209.4))

Calculating this expression, we find:

d₀ ≈ 1106.38 mm

Therefore, the lens can be adjusted for object distances ranging from approximately 1106.38 mm to infinity.

Learn more about focal length here

https://brainly.com/question/2194024

#SPJ11

A 0.2-kg ice plate, initially at 0∘ C, slides down a 15-m-long surface, inclined at a 30 degree angle to the horizontal. The plate, once started from rest, glides down the incline. If 90% of the mechanical energy of the system is absorbed by the ice, what is the mass of melted ice, in grams, due to temperature increase of the plate at the bottom of the incline? (Specific heat for water is 4190 J/(kg∘C), latent heat of fusion for water is 3.33×105 J/kg.) Select one: a. 1.09 b. 0.04 c. 0.03 d. 0.16 e. 0.07 f. 3.15

Answers

Option b is correct. The mass of melted ice due to the temperature increase of the plate at the bottom of the incline is 0.04 kg or 40 g (approx.)

The kinetic energy of the ice plate is converted into the latent heat of fusion, melting ice when the ice plate moves down the inclined surface. The latent heat of fusion is the amount of heat energy required to convert one unit of mass from a solid state into a liquid state without altering its temperature.

It means the temperature of the ice plate remains constant when it melts. To solve the given problem, use the principle of conservation of mechanical energy, which states that the total mechanical energy of a system remains constant if no external forces act on it. The initial potential energy of the ice plate is mgh where m = [tex]0.2 kg, g = 9.8 m/s^2[/tex], and [tex]h = 15 sin 30^0 = 7.5 m[/tex]

Initial potential energy = mgh = 0.2 × 9.8 × 7.5 = 14.7 J

Let the melted ice mass be m' in kg. The final potential energy of the ice plate is 0 because it reaches the bottom of the inclined surface. The final kinetic energy of the ice plate is converted into the latent heat of fusion to melt the ice, given by:

[tex]mgh = mL + (1/2)mv^2[/tex]

Where m = 0.2 - m' kg, v = final velocity of the ice plate, and L = latent heat of fusion = [tex]3.33*10^5[/tex] J/kg.

The final velocity of the ice plate, v is given by:

[tex]v^2 = 2gh v = \sqrt(2gh) = \sqrt(2 * 9.8 * 7.5) = 10.98 m/s[/tex]

Substituting this value in the equation for [tex]mgh = mL + (1/2)mv^2[/tex],

[tex]0.2 * 9.8 * 7.5 = (0.2 - m') * 3.33 * 10^5 + (1/2) * (0.2 - m') * (10.98)^2 1.47 * 10^2\\= (0.2 - m') * 3.33 * 10^5 + (0.1 - 0.549m' + 0.5m') 1.47 * 10^2\\ = (0.2 - m') * 3.33 * 10^5 - 0.0495m'\\= 0.04 kg or 40 g (approx.)[/tex]

Therefore, the mass of melted ice due to the temperature increase of the plate at the bottom of the incline is 40 g.

Learn more about latent heat of fusion here:

https://brainly.com/question/23976436

#SPJ11

Light of wavelength λ = 350 nm shines through two narrow slits which are 280 μm apart. What is the maximum number of interference maxima which could conceivably be observed (assuming that diffraction minima do not extinguish them and the screen is arbitrarily large)?

Your answer should be an integer. There is no sig-fig requirement for your answer.

Answers

The maximum number of interference maxima that could conceivably be observed is approximately 1600. The maximum number of interference maxima that can be determined using the formula for the number of interference maxima.

The maximum number of interference maxima that could be observed in this scenario can be determined using the formula for the number of interference maxima in a double-slit experiment:

N = (2 * d * sinθ) / λ

where N is the number of maxima, d is the slit separation, θ is the angle between the central maximum and the maxima, and λ is the wavelength of the light.

In this case, we are given that the slit separation is 280 μm (or 280 × [tex]10^-^6 m[/tex]) and the wavelength is 350 nm (or 350 × [tex]10^-^9 m[/tex]). We need to find the maximum value of N, which occurs when sinθ equals 1 (indicating the largest possible angle for constructive interference).

Substituting the given values into the formula, we have:

N = (2 * 280 ×[tex]10^-^6[/tex]m * 1) / (350 × [tex]10^-^9[/tex] m)

N = (560 × [tex]10^-^6[/tex]) / (350 × [tex]10^-^9[/tex])

N ≈ 1600

Therefore, the maximum number of interference maxima that could conceivably be observed is approximately 1600.

Learn more about  interference maxima  here:

brainly.com/question/32007143

#SPJ11

Other Questions
A project with an initial cost=$500,000, generates a 12% rate ofreturn (IRR) for infinite years, assuming the cost of capital is10%. Then the economic profit (EVA) and the NPV are? Derek has the opportunity to buy a money machine today. The money machine will pay Derek $49,960.00 exactly 15.00 years from today. Assuming that Derek believes the appropriate discount rate is 5.00%, how much is he willing to pay for this money machine? Answer format: Currency: Round to: 2 decimal places. Suppose Air Nova's finance (interest) expense in 2019 was $1,033 million. Assume a discount rate of 8%. If the tax rate is 35%, what is Air Nova's annual interest tax shield? (Round your answer to 2 decimal places. Enter your answer in millions of dollars.)Annual interest tax shield ___PV of the annual tax shield ___ McDonalds, Taco Bell, Starbucks, and 7-Eleven are all examples of: franchises alliances joint ventures wholly owned subsidiaries For the next fiscal year, you forecast net income of $49,200 and ending assets of $500,900. Your firm's payout ratio is 10.8%. Your beginning stockholders' equity is $298.200, and your beginning total liabilities are $120.000. Your non-debt llabilities such as accounts davable are forecasted to increase DV $10.500. Assume vour beginning debt is s100 U. vhat amount ot edult and what amount ot debt would vou needto issue to cover the net new financing in order to keep your debt-equity ratio constant?The amount of debt to issue will be s (Round to the nearest dollar )The amount of equity to issue will be (Round to the nearest dollar.) You are currently thinking about investing in a stock valued at $25.00 per share. The stock recently paid a dividend of $2.25 and its dividend is expected to grow at a rate of 5 percent for the foreseeable future. You normally require a return of 14 percent on stocks of similar risk.Is the stock overpriced, underpriced, or correctly priced? Using the Indirect Method, would your ADD (A) or Deduct (D) the following from Net Income:(1) Depreciation of fixed assets(2) Increase in accounts receivable(3) Amortization of Patents(4) Decrease in Rent Payable(5) Loss on Sale of Investments(6) Decrease in prepaid advertising(7) Amortization of premium on bonds payable(8) Decrease in notes receivable due in 45 days(9) Decrease in merchandise inventory(10) Increase in dividends payable(11) Gain on retirement of bonds payable(12) Increase in accounts payable Ron Rhodes calls his broker to inquire about purchasing a bond of Golden Years Recreation Corporation. His broker quotes a price of $1,110. Ron is concerned that the bond might be overpriced based on the facts involved. The $1,000 par value bond pays 15 percent annual interest payable semiannually, and has 10 years remaining until maturity. The current yield to maturity on similar bonds is 12 percent. a. Compute the new price of the bond. Use Appendix B and Appendix D. (Round "PV Factor" to 3 decimal places. Do not round intermediate calculations. Round the final answer to 2 decimal places.) New price of the bond $ b. Do you think the bond is overpriced? multiple choice Yes No If the paradox of thrift holds and people increase their rate of saving, the resultinga) rise in investment can lead to a cycle of rising interest rates and higher government expenditures and debt.b) decline in expenditures can lead to a cycle of declining expenditures and production.c) decline in expenditures will be offset by increased government spending and a rising debt.d)rise in investment can lead to a cycle of declining expenditures and production. net neutrality refers to internet backbone owners treating all internet traffic equally. (True or False) which of the following is not true concerning salt marshes 17. In order to erect a perpendicular to a line by the method indicated in Fig. 31 of the text, the distance BC is made equal to 40ft. When the zero mark of a 100ft tape is held at point B and a man at point D holds the 30ft mark and the 34-ft mark together at that point, the line BD will be perpendicular to the line BC if the reading of the tape at point C is A. 96ft. C. 86ft. B. 94ft. D. 84ft. FIG. 31. ERECTING PERPENDICULAR AT POINT ON LINE Using a LTL or package carrier makes sense whena. customer density is high and backhaul costs are significantb. customer density is high and and backhaul costs are lowc. customer density is high and customers are larged. customer density is high and distances are short In Australia, companies focus more on the past and present and have a deep respect for tradition. This is an example of: Individualism Collectivism Short-term orientation Long-term orientation nitriles are hydrolyzed in aqueous solution under either acidic or basic conditions to yield A spider crawling across a table leaps onto a magazine blocking its path. The initial velocity of the spider is 0.880 m/s at an angle of 38.0 above the table, and it lands on the magazine 0.0610 s after leaving the table. Ignore air resistance. How thick is the magazine Express your answer in millimeters. Number Units What is the probability of rolling either a'1', a'3' or a ' 5 ' with a 5-sided die? Common stock value-Variable growth Newman Manufacturing is considering a cash purchase of the stock of Grips Tool. During the year just completed, Grips earned $3.32 per share and paid cash dividends of $1.62 per share (D =$1.62). Grips' earnings and dividends are expected to grow at 25% per year for the next 3 years, after which they are expected to grow 9% per year to infinity. What is the maximum price per share that Newman should pay for Grips if it has a required return of 16% on investments with risk characteristics similar to those of Grips? min the beginning of chapter 6, entwistle talks about his appreciation for aesthetics. c. s. lewis would call the author _____ Analysis for Panic of 2001 and Corporate Transparency,Accountability, and Trust (A)intro minimum of 250 words, development 250 words too