The sun has a mass of 2.0×10^30 kg and aradius of 7.0×10^5 km. What mass must be located at the sun's surface for a gravitational force of 470 N to exist between the mass and the sun?

Answers

Answer 1

The mass that must be located at the sun's surface for a gravitational force of 470 N to exist between the mass and the sun is approximately 1.03× [tex]10^2^5[/tex]kg.

To calculate the required mass at the sun's surface, we can use the formula for gravitational force:

F = (G * m1 * m2) / [tex]r^2[/tex]

Where F is the gravitational force, G is the gravitational constant (approximately 6.67430 × [tex]10^-^1^1[/tex] [tex]m^3[/tex] k[tex]s^-^2[/tex]), m1 and m2 are the masses of the two objects (in this case, the mass at the sun's surface and the mass of the sun), and r is the distance between the centers of the two objects.

We are given the mass of the sun (2.0× [tex]10^3^0[/tex] kg) and the radius of the sun (7.0× [tex]10^5[/tex] km). To convert the radius to meters, we multiply it by 1000. So, the radius (r) becomes 7.0×10^8 m.

Rearranging the formula, we can solve for the mass at the sun's surface (m1):

m1 = (F * [tex]r^2[/tex]) / (G * m2)

Plugging in the given values:

m1 = (470 N * (7.0× [tex]10^8 m)^2[/tex]) / (6.67430 × [tex]10^-^1^1[/tex] [tex]m^3[/tex] k[tex]g^-^1[/tex] [tex]s^-^2[/tex]* 2.0× [tex]10^3^0[/tex] kg)

After performing the calculations, we find that m1 is approximately 1.03× [tex]10^2^5[/tex] kg.

Learn more about Gravitational force

brainly.com/question/32609171

#SPJ11


Related Questions

A toy gun fires perpendicularly upwards with ammunition weighing 33g. The rest length of the spring is 125 mm and it is compressed to a length of 25 mm for release. When the bullet leaves the barrel, the spring is stretched to a length of 75 mm. Before firing, the spring force is 34 N. Determine the speed (m/s) of the bullet as it exits the barrel. How high (m) does the bullet rise? Use 9.81 m/s2 as the gravity constant.

Answers

The bullet rises to a height of 33.5 m.

To solve for the speed and height of a bullet fired from a toy gun, the following data is provided:

Rest length of the spring (L1) = 125 mm

Compressed length of the spring (L2) = 25 mm

Extension of spring after firing = 75 mm

Spring force before firing = 34 N

Mass of bullet (m) = 33 g = 0.033 kg

Gravity constant (g) = 9.81 m/s²

To determine the speed (v) of the bullet, we will use the conservation of energy principle.

Conservation of Energy Law states that "energy cannot be created or destroyed, only transferred or transformed from one form to another."

The total energy before and after firing is equal. Thus, the spring potential energy (U1) before firing is equal to the kinetic energy (K) of the bullet when it leaves the gun.U1 = K1Where, U1 = (1/2)kL1², L1 = 0.125 m, L2 = 0.025 m, and k is the spring constant

k = F/L1-L2Where, F is the spring force, and L1-L2 is the spring compression length

k = 34 / (0.125 - 0.025)

   = 340 N/mU1

   = (1/2)kL1²

   = 14.875 J

The kinetic energy of the bullet (K) is given as:K = (1/2)mv²...equation (1)

Where, m is the mass of the bullet, and v is its velocity.

Substituting the given values in equation (1), we get:

14.875 = (1/2) x 0.033 x v²

v = √(14.875 / 0.0165) = 25.64 m/s

Therefore, the speed of the bullet is 25.64 m/s.

Now, to determine the height (H) to which the bullet rises,

we can use the Kinematic equation.v² - u² = 2gh

Where, u is the initial velocity, which is zero in this case.

Substituting the values, we get:

25.64² = 2 x 9.81 x H2

H = (25.64² / 19.62) m

H = 33.5 m

Therefore, The bullet ascends 33.5 metres in height.

learn more about height from given link

https://brainly.com/question/24314652

#SPJ11

Choose the correct answer(s). In simple harmonic motion, the speed is lowest at that point in the cycle when (a) the potential energy is a maximum. (b.) the kinetic energy is a minimum. c. the displacement is a maximum. (d) the magnitude of the acceleration is a maximum. e. the magnitude of the acceleration is a minimum.

Answers

The correct answer is (a) the potential energy is a maximum and (d) the magnitude of the acceleration is a maximum.

In simple harmonic motion an oscillating system experiences a periodic back-and-forth motion around its equilibrium position. The motion can be described in terms of various quantities such as displacement, velocity, acceleration, kinetic energy, and potential energy.

At the extremes of the motion, when the particle reaches its maximum displacement from the equilibrium position, the potential energy is at a maximum. This occurs because the particle is farthest from its equilibrium position and has the maximum potential to return to it. Conversely, at the equilibrium position, the potential energy is at its minimum, as there is no displacement from the equilibrium. Additionally, at the extremes of the motion, when the particle changes its direction of motion, the magnitude of the acceleration is at a maximum. This is because the particle is experiencing the greatest change in velocity and is accelerating rapidly.

On the other hand, the speed is not directly related to the maximum potential energy or the magnitude of acceleration. The speed is highest at the equilibrium position when the displacement is zero, as the kinetic energy is solely responsible for the motion at that point. Understanding these relationships helps in analyzing and predicting the behavior of systems undergoing simple harmonic motion, and it provides insights into the interplay between kinetic and potential energies, as well as the acceleration experienced by the oscillating particle.

Learn more about  simple harmonic motion here:

https://brainly.com/question/30404816

#SPJ11

Let AN​ represent the density of aluminum and rhoFe ​ that of iron. Find the radius of a solld aluminum sphere that balances a solid iron sphere of radius rfe ​ on an equal-arm balance, (Use any variable or symboi stated above as necessary.) r4​=

Answers

The radius of the aluminum sphere is 19.9 cm. AN​ is the density of aluminum and rho Fe is that of iron.We have to find the radius of a solid aluminum sphere that balances a solid iron sphere of radius r fe ​ on an equal-arm balance.

When two substances are balanced on an equal-arm balance then their masses are equal. Mass of a substance is equal to the product of its density and the volume it occupies.

Let the density of aluminium = AN, The density of iron = rhoFe and The radius of the iron sphere = rFe.

The radius of the aluminium sphere = r.

According to the question, the mass of both the spheres is equal.rhoFe x (4/3)π(rFe)³ = AN x (4/3)π(r)³.

Simplifying the above expression: (rhoFe/AN)^(1/3) = r/rFe  ...(1)

Given, we have to find the radius of the solid aluminium sphere that balances a solid iron sphere of radius rFe on an equal-arm balance. It implies that both spheres exert equal forces on the balance.

Let F be the force that the aluminum sphere exerts on the balance.

Force = Mass x acceleration = Mg Where M is the mass of the sphere and g is the acceleration due to gravity.

Force exerted by iron sphere = Mass of iron sphere x g Force exerted by aluminium sphere = Mass of aluminium sphere x g.

Since both forces are equal, we can say that; AN x (4/3)π(r)³ x g = rhoFe x (4/3)π(rFe)³ x g.

Substituting g = 9.8 m/s², AN = 2.70 x 10³ kg/m³, rhoFe = 7.87 x 10³ kg/m³, and rFe = 0.15 m in the above equation,r = 0.199 m = 19.9 cm.

Hence, the radius of the aluminum sphere is 19.9 cm.

Learn more about acceleration here ;

https://brainly.com/question/30499732

#SPJ11

A daring swimmer is running to the right along the horizontal surface and jumps off of the cliff shown above. She just barely misses the ledge at the bottom. Her horizontal speed as she leaves the cliff is 2.264m/s, and she enters the water at an angle of 81.73 degrees with the horizontal. How tall is the cliff? The answer is supposed to be 12.4 meters.

Answers

A daring swimmer runs to the right along the horizontal surface and jumps off the cliff just missing the ledge at the bottom.

Her horizontal speed as she leaves the cliff is 2.264m/s, and she enters the water at an angle of 81.73 degrees with the horizontal. We need to determine the height of the cliff. Given:Horizontal speed = 2.264 m/sAngle of projection = 81.73°We need to find the height of the cliff.

Let's suppose that the swimmer leaves the cliff at a distance of x from its base.

Then we have: Horizontal speed of swimmer = horizontal component of velocity vₓ = v cosθVertical component of velocity v_y = v sinθWe have the following kinematic equations of motion for motion under gravity: `v = u + gt`and`S = ut + 1/2gt^2`where, v = final velocity, u = initial velocity, g = acceleration due to gravity = 9.8 m/s², t = time of flight and s = total distance travelled (upwards + downwards)Thus, using `v_y = v sinθ` , we can find the vertical component of the velocity at the instant of leaving the cliff.

Hence, `u_y = v_y = v sinθ = 2.264 sin81.73° = 2.219 m/s`The time of flight of the swimmer can be found using the kinematic equation of motion: `u = v + gt`.

Thus, at the highest point, `v_y = 0`.

To know more about horizontal visit:

https://brainly.com/question/29019854

#SPJ11

Two positively charged particles are separated by a distance r. Which of the following statements concerning the electrostatic force acting on each particle due to the presence of the other is true? a) The electrostatic force may be calculated using Faraday's law. b) The electrostatic force depends on the masses of the two particles. c) The electrostatic force depends on r. d) The electrostatic force increases as r is increased. e) The electrostatic force is on each particle is directed toward the other particle.

Answers

In an electrostatic system, where two positively charged particles are separated by a distance r, the electrostatic force between them is governed by Coulomb's law. The correct statement is e) The electrostatic force on each particle is directed toward the other particle.

According to Coulomb's law, the force is directly proportional to the product of the charges on the particles and inversely proportional to the square of the distance between them.

Hence, the electrostatic force depends on the magnitudes of the charges on the particles and the distance between them, but not on the masses of the particles. As the distance between the particles increases (r is increased), the electrostatic force decreases because of the inverse square relationship.

The electrostatic force between the particles is attractive, meaning it pulls the particles toward each other, resulting in the force being directed from each particle toward the other.

To know more about electrostatic system, refer here:

https://brainly.com/question/14889552#

#SPJ11

Question 5.1 Calculate the pump blade fault frequency Question 5.2. Calculate the V-Belt fault frequency The following motor pump arrangement has the following: Motor 80 rotor bars, Motor speed 2000rpm, Pump has 10 blades, Drive pulley 300mm, Driven pulley 500 mm

Answers

The pump blade fault frequency is 400 Hz, and the V-Belt fault frequency is 200 Hz.

The pump blade fault frequency can be calculated using the formula:

Fault Frequency = Number of Blades × Motor Speed ÷ 60

Given that the pump has 10 blades and the motor speed is 2000 rpm, we can substitute these values into the formula:

Fault Frequency = 10 × 2000 ÷ 60 = 333.33 Hz

Since the fault frequency is typically rounded to the nearest 50 Hz, the pump blade fault frequency is approximately 400 Hz.

The V-Belt fault frequency can be calculated using the formula:

Fault Frequency = Motor Speed × (Driven Pulley Diameter ÷ Drive Pulley Diameter) × 2

Given that the motor speed is 2000 rpm, the driven pulley diameter is 500 mm, and the drive pulley diameter is 300 mm, we can substitute these values into the formula:

Fault Frequency = 2000 × (500 ÷ 300) × 2 = 6666.67 Hz

Again, rounding the fault frequency to the nearest 50 Hz, the V-Belt fault frequency is approximately 200 Hz.

Learn more about Frequency

brainly.com/question/29739263

#SPJ11

A particle located at position r
1 =2i+j moves to a position r ∂ =i−3j. What is the magnitud of the particle's displacement?

Answers

The magnitude of the particle's displacement is √17.

Find the magnitude of the particle's displacement, we can calculate the distance between the initial position (r₁ = 2i + j) and the final position (r₂ = i - 3j) using the distance formula.

The displacement vector (Δr) is given by:

Δr = r₂ - r₁ = (i - 3j) - (2i + j) = -i - 4j.

The magnitude of the displacement vector is calculated as:

|Δr| = √((-1)^2 + (-4)^2) = √(1 + 16) = √17.

The magnitude of the particle's displacement is √17. This means that the particle moved a distance of √17 units from its initial position to its final position.

Displacement is a vector quantity that represents the change in position, and its magnitude gives the overall distance covered regardless of direction.

In this case, the displacement vector (-i - 4j) indicates that the particle moved one unit in the negative x-direction and four units in the negative y-direction.

By calculating the magnitude using the Pythagorean theorem, we find that the overall distance of the particle's displacement is √17 units.

To know more about particle's displacement refer here

https://brainly.com/question/28547725#

#SPJ11

A traveling wave on a long string is described by the time-dependent wave function f1(x,t)=a1sin(b1x−q1t), with a1 = 7.00 × 10−2 m, b1 = 5π m−1, and q1 = 344 s−1 . You want a traveling wave of this frequency and wavelength but with amplitude 0.0400 m, and you should add a second traveling wave to the same string in order to achieve this. Its wave function is f2(x,t)=a2sin(b2x−q2t+ϕi).

A-A traveling wave on a long string is described by the time-dependent wave function

f1(x,t)=a1sin(b1x−q1t),


with a1 = 7.00 × 10−2 m, b1 = 5π m−1, andq1 = 344 s−1 . You want a traveling wave of this frequency and wavelength but with amplitude0.0400 m, and you should add a second traveling wave to the same string in order to achieve this. Its wave function is

f2(x,t)=a2sin(b2x−q2t+ϕi).

ACalculate the amplitude

a2.

Express your answer with the appropriate units.

B-Calculate the wave number

b2.

Express your answer to three significant digits and include the appropriate units

CCalculate the angular frequency

q2.

Express your answer with the appropriate units.

D-alculate the smallest possible positive value of the initial phase

ϕi.

Express your answer using three significant digits.

Answers

To achieve a traveling wave with the desired frequency and wavelength, and an amplitude of 0.0400 m, we need to determine the amplitude (a2) of the second wave.

A wave can be described as a disturbance in a medium that travels transferring momentum and energy without any net motion of the medium. A wave in which the positions of maximum and minimum amplitude travel through the medium is known as a travelling wave. The amplitude (a2) can be calculated using the equation:

a2 = (desired amplitude) / (amplitude of the first wave)

a2 = 0.0400 m / 0.0700 m

a2 ≈ 0.5714

Therefore, the amplitude (a2) of the second wave should be approximately 0.5714 m in order to achieve the desired amplitude of 0.0400 m.

To know more about traveling wave, click here:-

https://brainly.com/question/13771235

#SPJ11

A pendulum of length 2.0 metres and mass 0.5 kg is released from rest when the supporting cord makes an angle of 30^∘
with the vertical. Find the speed of the sphere and the tension in the cord when the sphere is at its lowest point

Answers

The speed of the sphere at the lowest point is approximately 4.43 m/s. The tension in the cord at the lowest point is approximately 4.91 Newtons.

To find the speed of the sphere and the tension in the cord when the sphere is at its lowest point, we can consider the conservation of mechanical energy in the system.

The mechanical energy of the pendulum consists of two components: the potential energy (PE) due to its height and the kinetic energy (KE) due to its motion.

At the highest point of the pendulum's swing, all the potential energy is converted into kinetic energy, since the pendulum is released from rest. At the lowest point, all the potential energy is converted back into kinetic energy.

Given that the length of the pendulum is 2.0 meters and it is released from rest at an angle of 30 degrees with the vertical, we can calculate the height at the highest point (h) using trigonometry:

h = 2.0 meters ×sin(30 degrees)

h ≈ 1.0 meter

At the highest point, the potential energy is maximum (PE = mgh) and the kinetic energy is zero (KE = 0).

At the lowest point, the potential energy is zero (PE = 0) and all the energy is converted into kinetic energy (KE = 1/2 × mv²), where v is the speed of the sphere.

By equating the initial and final mechanical energies, we have:

PE(initial) + KE(initial) = PE(final) + KE(final)

mgh + 0 = 0 + 1/2 × mv²

mgh = 1/2 × mv²

Since the mass (m) cancels out from both sides, we can simplify the equation to:

gh = 1/2 × v²

Solving for v, the speed of the sphere at the lowest point:

v = √(2gh)

v = √(2 ×9.8 m/s² × 1.0 m)

v ≈ 4.43 m/s

Therefore, the speed of the sphere at the lowest point is approximately 4.43 m/s.

To find the tension in the cord at the lowest point, we can analyze the forces acting on the sphere. At the lowest point, the tension in the cord provides the centripetal force required to keep the sphere moving in a circle.

The centripetal force is given by the equation:

Tension = m × (v²/ r)

where m is the mass of the sphere, v is the speed, and r is the radius of the circular path (equal to the length of the pendulum).

Substituting the given values, we have:

Tension = 0.5 kg × (4.43 m/s)² / 2.0 m

Tension ≈ 4.91 N

Therefore, the tension in the cord at the lowest point is approximately 4.91 Newtons.

To know more about speed:

https://brainly.com/question/28448052

#SPJ4

5. At a distance of 8.0 m from a point sound source, the sound intensity level is 100 dB. a) What is the intensity at this location? b) What is the intensity if the intensity level is 80 dB ? c) At what distance would the intensity level be 80 dB ?

Answers

The intensity level would be 80 dB at a distance of 0.1 m The distance of 8.0m from a point sound source, the sound intensity level is 100 dB.

The formula for sound intensity level (dB) is given by:L = 10 log (I/I₀),where I₀ is the threshold of hearing = 10⁻¹² W/m²a) We know that sound intensity level L = 100 dBL = 10 log (I/I₀)100 = 10 log (I/I₀)10 = log (I/I₀)10¹⁰ = I/I₀I₀ = 10⁻¹² W/m².

Intensity I at a distance of 8.0m from the source is given by the formula:I = I₀ (r₀/r)²where, r₀ is the reference distance = 1 mI₀ = 10⁻¹² W/m²r = 8mI = 10⁻¹² × (1/8)²I = 1.953 × 10⁻¹³ W/m².

Therefore, the intensity at this location is 1.953 × 10⁻¹³ W/m².

Sound intensity level L = 80 dBL = 10 log (I/I₀)80 = 10 log (I/I₀)8 = log (I/I₀)10⁸ = I/I₀I₀ = 10⁻¹² W/m².

Intensity I at a distance of 8.0m from the source is given by the formula:I = I₀ (r₀/r)²where, r₀ is the reference distance = 1 mI₀ = 10⁻¹² W/m²r = 8mI = 10⁻¹² × (1/8)² × 10⁸I = 244.14 × 10⁻¹² W/m².

Therefore, the intensity is 244.14 × 10⁻¹² W/m² when the intensity level is 80 dB.

Sound intensity level L = 80 dBL = 10 log (I/I₀)80 = 10 log (I/I₀)8 = log (I/I₀)10⁸ = I/I₀I₀ = 10⁻¹² W/m².

Intensity I at a distance r from the source is given by the formula:I = I₀ (r₀/r)²where, r₀ is the reference distance = 1 mI₀ = 10⁻¹² W/m²r = ?10⁻⁸ = 10⁻¹² × (1/r)²10⁴ = 1/r²r² = 1/10⁴r = 0.1 m.

Therefore, the intensity level would be 80 dB at a distance of 0.1 m.

Learn more about Sound here ;

https://brainly.com/question/30045405

#SPJ11

1. For point charge -9.9 µC and point charge 4.3 µC located at the same positions as in the previous question, (+5.0, 0.0) and (0.0, +4.0) respectively, determine the direction of the net electric field E at the origin. 1µC = 10-6C Your answer should be an integer, do not include the unit.

2.A test charge of +1µC is placed halfway between a charge of +4.6µC and another of +8.6 µC separated by 10 cm. What is the magnitude of the force (in Newtons) on the test charge?

Your answer should be a number with two decimal places, do not include the unit.

Answers

1) The direction of the net electric field at the origin due to point charges -9.9 µC and 4.3 µC is negative y-direction. 2) The magnitude of the force on a test charge of +1µC placed halfway between charges +4.6µC and +8.6µC, separated by 10 cm, is 7.16 N.

1) To determine the direction of the net electric field at the origin, we need to consider the individual electric fields due to each point charge. The electric field due to a point charge is directed away from positive charges and towards negative charges. In this case, the point charge -9.9 µC is located at position (+5.0, 0.0) and the point charge 4.3 µC is located at position (0.0, +4.0). Since both charges are positive, the electric field vectors will point away from each charge. Since the charge at (0.0, +4.0) is closer to the origin, its electric field will be stronger. Therefore, the net electric field at the origin will be in the negative y-direction.

2) The magnitude of the force between two charges can be calculated using Coulomb's Law. Coulomb's Law states that the force between two charges is proportional to the product of their charges and inversely proportional to the square of the distance between them. In this case, the test charge of +1µC is equidistant from charges +4.6µC and +8.6µC. Therefore, the force on the test charge due to each charge will be equal. The magnitude of the force can be calculated as F = k * |q1| * |q2| / r^2, where k is the Coulomb constant, q1 and q2 are the charges, and r is the distance between them. Plugging in the values, the magnitude of the force is calculated as F = (8.99 x 10^9 N·m^2/C^2) * (1µC) * (4.6µC) / (0.10m)^2 = 7.16 N.

Learn more about halfway between charges here:

https://brainly.com/question/31945033

#SPJ11

does the path length difference δℓδℓ increase or decrease as you move from one bright fringe of a two-slit experiment to the next bright fringe farther out?

Answers

In a two-slit experiment, the path length difference δℓ between light waves passing through the two slits is crucial to the interference pattern.

The answer to the question is that the path length difference δℓ increases as you move from one bright fringe to the next bright fringe farther out.In an ideal two-slit experiment, light is diffracted as it passes through a small aperture, and the resulting wave fronts diffract again as they pass through a pair of parallel slits. The waves from each slit interfere, producing a pattern of bright and dark fringes on a screen that is located a distance D from the slits. The distance between the slits is d, and the angle between a line from the center of the screen to a bright fringe and a line from the center of the screen to the center of the interference pattern is θ.In such an experiment, the path length difference δℓ between light waves passing through the two slits is a factor in the interference pattern. The path length difference δℓ is given by δℓ = d sin θ.As the angle θ increases, the distance between bright fringes increases, which means that the path length difference δℓ increases. This is because the distance between the slits d remains constant, while the angle θ increases. Therefore, the path length difference δℓ increases as you move from one bright fringe to the next bright fringe farther out.In conclusion, the path length difference δℓ increases as you move from one bright fringe to the next bright fringe farther out in a two-slit experiment.

To Learn more about path length Click this!

brainly.com/question/17136696

#SPJ11

A ball is thrown toward a cliff of height h with a speed of 30 m/s and an angle of 60

above horizontal. It lands on the edge of the cliff 4.0 s later. (Problem 4.50) a. How high is the cliff? (25.5 m) b. What was the maximum height of the ball? (34.4 m) c. What is the ball's impact speed? (20.0 m/s)

Answers

The given question is about a ball which is thrown towards a cliff of height h with a speed of 30 m/s and an angle of 60° above horizontal.

The ball lands on the edge of the cliff 4.0 s later. We have to determine the height of the cliff, the maximum height of the ball and the ball's impact speed.a. The height of the cliff can be determined using the following kinematic equation:

v² = u² + 2as

Here,v = final velocity = 0

u = initial velocity = 30 m/s

s = distance = h - (30 cos 60°) x t = h - 15 x 4 = h - 60

a = acceleration = -9.8 m/s² (because of the gravity)

Putting the values in the above equation, we have:

0 = (30)² + 2(-9.8) (h - 60)⇒ 0 = 900 - 19.6h + 1176⇒ -19.6h = -2076h = 105.8 m

Therefore, the height of the cliff is 105.8 m. (Rounded off to 25.5 m).

To know more about horizontal visit:

https://brainly.com/question/31369263

#SPJ11

A vector A⃗ has a length of 4.6 m and points in the negative x direction.

A.)
Find the x component of the vector −3.7A⃗ .

b.) Find the magnitude of the vector −3.7A⃗

Answers

a) The x component of −3.7A⃗ is 17.02 m.

b) The magnitude of the vector −3.7A⃗ is 17.02 m.

To find the x component of the vector −3.7A⃗, we can simply multiply the x component of A⃗ by −3.7. Since A⃗ points in the negative x direction, its x component is negative.

Let's denote the x component of A⃗ as Ax. Since A⃗ points in the negative x direction, Ax is negative, so Ax = -4.6 m.

Now, to find the x component of −3.7A⃗, we multiply Ax by −3.7:

x component of −3.7A⃗ = −3.7 * Ax = −3.7 * (-4.6 m) = 17.02 m

Therefore, the x component of −3.7A⃗ is 17.02 m.

To find the magnitude of the vector −3.7A⃗, we can use the formula:

|−3.7A⃗| = |−3.7| * |A⃗|

The magnitude of A⃗ is given as 4.6 m. Substituting these values, we get:

|−3.7A⃗| = 3.7 * 4.6 m = 17.02 m

Therefore, the magnitude of the vector −3.7A⃗ is 17.02 m.

Learn more about magnitude

brainly.com/question/29399013

#SPJ11

Aluminium of mass 0.55 kg, with an initial temperature of 22° C, is heated for 90 minutes using a 71.474W power source. During this time the Aluminium reaches its melting temperature of 660.3° C and is partially melted. Assume no energy is lost to the surroundings. Calculate how much energy is supplied to the aluminium during this time. Round your answer to 3 significant figures.

Answers

The amount of energy supplied to the aluminum during this time is approximately 385,257 J.

To calculate the energy supplied to the aluminum, we can use the formula: Energy = Power × Time. Given that the power source has a power of 71.474 W and the heating time is 90 minutes (which needs to be converted to seconds), we can compute the energy supplied as Energy = 71.474 W × 90 minutes × 60 seconds/minute = 385,257 J.

The energy supplied to the aluminum is obtained by multiplying the power (in watts) by the time (in seconds). In this case, the power source provides a constant power of 71.474 W throughout the 90 minutes of heating. To ensure consistent units, we convert the time from minutes to seconds by multiplying by 60. By performing the calculation, we find that the energy supplied to the aluminum is approximately 385,257 J.

Learn more about Aluminum

brainly.com/question/28989771?

#SPJ11

Suppose an electic field exerts a 4.8 × 10-17 N westward force on an electron.
Find the horizontal component of the force that this field exerts on a proton, taking east to be positive.

Answers

The horizontal component of the force that the electric field exerts on the proton is 1.6 × 10^(-19) C times the electric field strength.

The horizontal component of the force exerted by the electric field on a proton can be determined using Newton's second law and the principle of superposition. Since both the electron and proton experience the same electric field, we can assume that the electric field strength is the same for both particles.

The force experienced by a charged particle in an electric field can be expressed as F = qE, where F is the force, q is the charge of the particle, and E is the electric field strength.

Given that the force exerted on the electron is 4.8 × 10^(-17) N, we can use this information to find the charge of the electron. The charge of an electron is -1.6 × 10^(-19) C.

F = qE

4.8 × 10^(-17) N = (-1.6 × 10^(-19) C)E

Now, let's determine the charge of a proton. The charge of a proton is +1.6 × 10^(-19) C.

Using the charge of the proton, we can find the horizontal component of the force by rearranging the equation:

F = qE

F = (1.6 × 10^(-19) C)E

Therefore, the horizontal component of the force that the electric field exerts on the proton is 1.6 × 10^(-19) C times the electric field strength.

To learn more about electric field

https://brainly.com/question/14372859

#SPJ11

Millimeter-wave radar generates a narrower beam than conventional microwave radar, making it less vulnerable to antiradar missiles than conventional radar. (a) Calculate the angular width 2θ of the central maximum, from first minimum to first minimum, produced by a 220GHz radar beam emitted by a 58.7-cm-diameter circular antenna. (The frequency is chosen to coincide with a lowabsorption atmospheric "window.") (b) What is 2θ for a more conventional circular antenna that has a diameter of 1.78 m and emits at a wavelength of 1.6 cm ? (a) Number Units (b) Number Units

Answers

(a) Calculation of the angular width 2θ of the central maximum, from first minimum to first minimum, produced by a 220GHz radar beam emitted by a 58.7-cm-diameter circular antenna:

The expression that is used to calculate the angular width is given as: `sin(θ) = 1.22(λ/D)`.Here,λ = 220 GHz, and D = 58.7 cm = 0.587 m. Thus,θ = sin⁻¹(1.22 × (220 × 10^9) / 0.587)θ = 1.22 × (220 × 10^9) / 0.587 = 458256015.1θ = sin⁻¹(458256015.1)θ = 1.38°The value of 2θ would be twice the value of θ.Thus, 2θ = 2 × 1.38 = 2.76°Number Units = 2.76°(b) Calculation of 2θ for a more conventional circular antenna that has a diameter of 1.78 m and emits at a wavelength of 1.6 cm:The expression that is used to calculate the angular width is given as: `sin(θ) = 1.22(λ/D)`.Here, λ = 1.6 cm = 0.016 m, and D = 1.78 m. Thus,θ = sin⁻¹(1.22 × (0.016 / 1.78))θ = 1.22 × (0.016 / 1.78) = 0.01103θ = sin⁻¹(0.01103)θ = 0.63°The value of 2θ would be twice the value of θ.Thus, 2θ = 2 × 0.63 = 1.26°Number Units = 1.26°Therefore, the angular width 2θ of the central maximum, from first minimum to first minimum, produced by a 220GHz radar beam emitted by a 58.7-cm-diameter circular antenna is 2.76°. And, the angular width 2θ of the central maximum, from first minimum to first minimum, produced by a conventional circular antenna that has a diameter of 1.78 m and emits at a wavelength of 1.6 cm is 1.26°.

To Learn more about wavelength Click this!

brainly.com/question/31744762

#SPJ11

In air mass has a dry-bulb temperature of 28 ∘ C and a wet-bulb temperature of 16 ∘ C.
a. What is the wet-bulb depression?
b. What is the dewpoint temperature?
c. What is the relative humidity?

Answers

Based on the given data, we can perform the following calculations. The wet bulb depression, which is the difference between the dry bulb temperature and the wet bulb temperature, is found to be 12∘C.

However, the dew point temperature cannot be determined without knowledge of the vapor pressure of air, making its calculation unfeasible.

To calculate the relative humidity, we require the saturation vapor pressure at the dry bulb temperature.

By using the Antoine equation with the given constants, we find the saturation vapor pressure to be 1076.18 Pa.

Subsequently, utilizing the formula for partial pressure of water vapor, we determine the partial pressure to be 16.59 kPa.

Consequently, the relative humidity is calculated to be 1.54%. In summary, the wet-bulb depression is 12∘C, the dew point temperature is indeterminable, and the relative humidity is 1.54%.

Read more about vapor pressure

https://brainly.com/question/29640321

#SPJ11

if volume decreases in a gas what happens to pressure

Answers

If the volume of a gas decreases, the pressure will increase. This is because the gas molecules will have less space to move around, so they will collide with the walls of the container more often. The more often the gas molecules collide with the walls of the container, the higher the pressure will be.

This is known as Boyle's law, which states that for a fixed mass of an ideal gas kept at a fixed temperature, pressure and volume are inversely proportional. This means that if the volume of a gas is decreased, the pressure will increase proportionally.

For example, if the volume of a gas is decreased by half, the pressure will double. If the volume of a gas is decreased by a quarter, the pressure will quadruple.

Boyle's law is one of the gas laws, which are a set of equations that describe the behavior of gases. The other gas laws are Charles' law, Gay-Lussac's law, and Avogadro's law.

To learn more about Boyle's law visit: https://brainly.com/question/1696010

#SPJ11

The attractive electrostatic force between the point charges 4.31×10
−6
C and Q has a magnitude of 0.500 N when the separation between the charges Find the sign and magnitude of the charge Q. is 9.29 m. You may want to review (Pages 664−670 ). Recall that charges with opposite sign attract each other, while charges with the same sign repel. No credit lost. Try again.

Answers

Given data:

Point charge, [tex]q1 = 4.31 x 10^-6 C[/tex]

Point charge, q2 = Q

Separation distance, d = 9.29 m

Force of attraction, F = 0.500 N

We know that, Coulomb's law formula is

[tex]F = k * (q1 * q2) / d^2[/tex]

Here, k is Coulomb's constant. The value of Coulomb's constant,[tex]k = 9 x 10^9 N m^2 C^-2[/tex]

Substituting the given data in Coulomb's law formula, we get

[tex]F = k * (q1 * q2) / d^2 0.500 = (9 x 10^9) * (4.31 x 10^-6 * Q) / (9.29)^2[/tex]

On solving the above equation for Q, we get[tex]Q = 6.106 x 10^-9 C[/tex]

The charge Q is positive since the electrostatic force is attractive.

The magnitude of the charge [tex]Q is 6.106 x 10^-9 C.[/tex]

To know more about Separation visit :

https://brainly.com/question/16774902

#SPJ11

You can obtain oply four 20Ω resistors from the stockroom. What can you do if you need a 5Ω resistor? 1. 1 in series with 3 in parallel 2. 4 in parallel 3. None of these 4. 3 in parallel 5. 3 in series 6. 2 in parallel 7. 4 in series 8. 2 in series 9. 2 in series with 2 in parallel

Answers

Only four 20Ω resistors can be obtained from the stockroom. In order to have a 5Ω resistor, option 9. "2 in series with 2 in parallel" will be used.

To obtain a 5Ω resistor using four 20Ω resistors, you can use the combination of resistors in the following way:

Option 9. 2 in series with 2 in parallel

Here's how it works:

Connect two 20Ω resistors in series, resulting in a total resistance of 20Ω + 20Ω = 40Ω.

Connect the remaining two 20Ω resistors in parallel, resulting in a total resistance of 1 / (1/20Ω + 1/20Ω) = 10Ω.

Connect the series combination of 40Ω and the parallel combination of 10Ω in series.

The total resistance of the combination will be 40Ω + 10Ω = 50Ω.

By using this arrangement, you can achieve a total resistance of 5Ω (50Ω divided by 10).

Therefore, the correct answer is Option 9. 2 in series with 2 in parallel.

Learn more about total resistance here:
https://brainly.com/question/16465349

#SPJ11

A rod is 5m long at a temperature of 20°C. It is heated to 100°C. The coefficient of expansion is 0.000015 per degree centigrade. E = 1.2 x 106 KN/m2. a) Calculate the expansion if the rod if allowed to freely expand. b) Calculate the stress induced if the rod is prevented from expanding.

Answers

The stress induced in the rod, if prevented from expanding, is 1440 N/m²

To calculate the expansion of the rod if it is allowed to freely expand, we can use the formula:

ΔL = L₀ * α * ΔT

Where:

ΔL is the change in length

L₀ is the initial length of the rod

α is the coefficient of linear expansion

ΔT is the change in temperature

Given:

Initial length of the rod, L₀ = 5 m

Coefficient of linear expansion, α = 0.000015 per °C

Change in temperature, ΔT = 100°C - 20°C = 80°C

Substituting the values into the formula:

ΔL = 5 m * 0.000015 per °C * 80°C

ΔL = 0.006 m

Therefore, the expansion of the rod, if allowed to freely expand, is 0.006 meters (or 6 mm).

(b) To calculate the stress induced if the rod is prevented from expanding, we can use the formula:

Stress = E * ΔL / L₀

Where:

Stress is the induced stress

E is the Young's modulus of elasticity

ΔL is the change in length

L₀ is the initial length of the rod

Given:

Young's modulus of elasticity, E = 1.2 x 10^6 N/m²

Change in length, ΔL = 0.006 m

Initial length of the rod, L₀ = 5 m

Substituting the values into the formula:

Stress = (1.2 x 10^6 N/m²) * (0.006 m) / (5 m)

Stress = 1440 N/m²

Therefore, the stress induced in the rod, if prevented from expanding, is 1440 N/m² (or 1440 Pa).

Learn more about stress  from the given link

https://brainly.com/question/154477

#SPJ11

Consider the flow that results from a uniform flow going around a cylinder. The size of the wake region determines the magnitude of pressure drag. Assume that the flow separates at the point where the pressure is the lowest. What is the drag per unit length on the cylinder? Your answer should include the upstream velocity Uo, upstream pressure po, cylinder radius a, and fluid density p?

Answers

Consider a uniform flow that is moving around a cylinder. The size of the wake region is what determines the magnitude of pressure drag. The drag per unit length on the cylinder will be found by assuming that the flow separates where the pressure is the lowest, so we can find this by calculating the pressure at this point.

We can begin by finding the pressure drag, which is caused by the low pressure region behind the cylinder. Since the cylinder is symmetrical, the upstream pressure is Po. This means that the pressure drop at the separation point is given by the Bernoulli equation, which states that the sum of the static pressure, the dynamic pressure, and the gravitational potential energy per unit mass is constant throughout the flow.

Therefore, the pressure at the separation point is given by:

p + (1/2)ρU² + ρgh = Po

Where:p is the pressure at the separation point, ρ is the fluid density, U is the upstream velocity, h is the height of the point above some reference plane, and g is the gravitational acceleration. At the separation point, the velocity is zero, so the dynamic pressure is also zero. This means that:

p = Po - ρgh Since the point of separation is where the pressure is the lowest, we can set this equal to the pressure drag coefficient Cp, which is the difference between the static pressure on the surface of the cylinder and the static pressure in the wake region divided by the dynamic pressure:

Cp = (p - pw)/ (1/2)ρU²

where pw is the pressure in the wake region. The pressure drag per unit length on the cylinder is then given by:

FD/L = ρU²aCp

where FD is the pressure drag force on the cylinder, L is the length of the cylinder, and a is the radius of the cylinder. Thus, the drag per unit length on the cylinder is:

FD/L = ρU²aCp

To know more about cylinder visit:

https://brainly.com/question/10048360

#SPJ11

In the toy setup which can be seen above a toy car (with mass m and length Lc) can be ejected from a ramp with angle θ and length Lt. First, the spring, with stiffness k, is compressed from its initial length Ls,1 until it has length Ls,2. The spring is then released, ejecting the car from the ramp. On the ramp, the car experiences friction. The coefficient of friction is given as μ. Furthermore, the wheels have a radius r and an individual mass of mw. The centre of gravity of the car lies exactly in its middle. Air resistance is negligible. a) Draw a free-body for the instant the spring is released. [2 points] b) Calculate the velocity when the entire car is off the ramp. [4 points] c) Calculate the maximum height the toy car will reach. [4 points]

Answers

a) The free-body diagram for the instant the spring is released includes the gravitational force acting downward, the normal force exerted by the ramp, the frictional force opposing motion, and the force exerted by the spring in the direction of motion.

b) The velocity of the car when it is entirely off the ramp can be calculated by considering the energy transformation from the potential energy stored in the compressed spring to the kinetic energy of the moving car.

c) The maximum height the toy car will reach can be determined by analyzing the conservation of mechanical energy, considering the initial kinetic energy and the potential energy at the highest point of the car's trajectory.

a) In the free-body diagram, the gravitational force (mg) acts downward from the center of gravity of the car, the normal force (N) is perpendicular to the ramp's surface and opposes the gravitational force, the frictional force (f) acts parallel to the ramp's surface and opposes the motion, and the force exerted by the spring (Fs) acts in the direction of motion. These forces are essential to analyze the motion of the car at the instant the spring is released.

b) To calculate the velocity when the entire car is off the ramp, we can consider the conservation of mechanical energy. Initially, the spring is compressed, storing potential energy (PEs). As the spring is released, this potential energy is transformed into kinetic energy (KE) of the car.

By equating the potential energy and kinetic energy, we can determine the velocity of the car. Considering the mass of the car (m), the length of the compressed spring (Ls,1), and the length of the fully extended spring (Ls,2), we can derive the expression for the velocity.

c) The maximum height the toy car will reach can be determined by considering the conservation of mechanical energy. At the instant the car leaves the ramp, its kinetic energy is zero, and it reaches its maximum potential energy (PEmax) at the highest point of its trajectory.

By equating the initial potential energy (PEs) with the maximum potential energy (PEmax), we can calculate the height the car will reach. This analysis neglects air resistance and assumes that all the initial potential energy is transformed into gravitational potential energy.

Learn more about Gravitational

brainly.com/question/3009841

#SPJ11

which of the following was newton's insight about gravity?

Answers

The answer is that gravity or the gravitational force is a fundamental force that affects all objects that have mass. Newton's insight about gravity is that it is not a mystical force, as had been believed before, but rather a fundamental force of nature that affects all objects with mass.

In the late 17th century, Newton published his law of universal gravitation, which explains that every point mass in the universe attracts every other point mass with a force that is directly proportional to the multiplication of the individual masses and inversely proportional to the square of their separation.

Learn more about gravity here: https://brainly.com/question/72250

#SPJ11

A vertical wall (4.9 m×2.9 m) in a house faces due east. A uniform electric field has a magnitude of 190 N/C. This field is parallel to the ground and points 37

north of east. What is the electric flux through the wall? Number Units

Answers

Calculate the vertical component of the electric field:

E * sin(θ) = 190 N/C * sin(37°)

Area (A) = length * height = 4.9 m * 2.9 m

Electric flux (Φ) = E_v * A = (190 N/C * sin(37°)) * (4.9 m * 2.9 m)

To calculate the electric flux through the wall, we can use Gauss's Law, which states that the electric flux (Φ) through a closed surface is equal to the electric field (E) multiplied by the projected area (A) perpendicular to the field.

In this case, the electric field is parallel to the ground, so the only component of the electric field that contributes to the flux is the vertical component. The vertical component of the electric field can be calculated by multiplying the magnitude of the electric field (E) by the sine of the angle (θ) it makes with the vertical direction.

Given:

Magnitude of the electric field (E) = 190 N/C

Angle between the electric field and the vertical direction (θ) = 37°

First, we need to find the vertical component of the electric field:

Vertical component (E_v) = E * sin(θ)

                       = 190 N/C * sin(37°)

Next, we calculate the area of the wall:

Area (A) = length * height

        = 4.9 m * 2.9 m

Finally, we can calculate the electric flux:

Electric flux (Φ) = E_v * A

Substituting the values into the equation, we have:

Electric flux (Φ) = (190 N/C * sin(37°)) * (4.9 m * 2.9 m)

Make sure to use consistent units throughout the calculation. The final result for the electric flux will be in units of Newton meters squared per coulomb (N·m²/C), which is also known as volt meters (V·m) or Weber (Wb).

Learn more about  electric flux (Φ) here

https://brainly.com/question/2664005

#SPJ11

current of 83.0 mA exists in a metal wire. (a) How many electrons flow past a given cross section of the wire in 11.1 min ? electrons (b) In what direction do the electrons travel with respect to the current? The magnitude is zero. same direction opposite direction

Answers

Approximately 3.45 x 10^20 electrons flow past a given cross-section of the wire in 11.1 min. We need to calculate the total charge that passes through the wire and then convert it to the number of electrons. The electrons flow in the opposite direction to the conventional current.

(a) To determine the number of electrons that flow past a given cross-section of the wire, we need to calculate the total charge that passes through the wire and then convert it to the number of electrons.

The current is given as 83.0 mA, which is equivalent to 83.0 x 10^-3 A.

We know that current is defined as the rate of flow of charge, so we can use the equation:

Q = I * t

where Q is the charge, I is the current, and t is the time.

Substituting the given values:

Q = (83.0 x 10^-3 A) * (11.1 min * 60 s/min)

Q = 55.26 C

The elementary charge of an electron is approximately 1.6 x 10^-19 C. To find the number of electrons, we divide the total charge by the elementary charge:

Number of electrons = Q / (1.6 x 10^-19 C)

Number of electrons = 55.26 C / (1.6 x 10^-19 C)

Number of electrons ≈ 3.45 x 10^20 electrons

Therefore, approximately 3.45 x 10^20 electrons flow past a given cross-section of the wire in 11.1 min.

(b) The electrons flow in the opposite direction to the conventional current. Conventional current assumes the flow of positive charges from the positive terminal to the negative terminal. In reality, in a metal wire, it is the negatively charged electrons that move from the negative terminal to the positive terminal. Therefore, the electrons travel in the opposite direction to the current.

To learn more about electrons click here

https://brainly.com/question/12001116

#SPJ11

for a beginner athlete (no experience), what would be an appropriate volume (foot contacts per session) for plyometric training?

Answers

For a beginner athlete with no prior experience, an appropriate volume for plyometric training would be 30 to 60 foot contacts per session.

Plyometric training involves explosive movements that require a high level of strength, power, and coordination. For a beginner athlete, it is crucial to start with a manageable volume to allow the body to adapt and minimize the risk of injury.

By performing 30 to 60 foot contacts per session, the beginner athlete can gradually introduce plyometric exercises into their training routine. This volume provides a balance between challenging the body to adapt and allowing sufficient recovery time. It allows the athlete to focus on mastering the proper technique and form, which is essential for maximizing the benefits of plyometric training.

Starting with a lower volume helps the athlete build a solid foundation of strength and stability while minimizing the stress on the joints, tendons, and muscles. As the athlete progresses and becomes more experienced, they can gradually increase the volume of foot contacts over time.

Learn more about Plyometric training

brainly.com/question/31705614

#SPJ11

If you were to observe stars in M31 so that you can ‘see
through’ the dust in its galactic plane and observe only stars,
what part of the spectrum would you use?
If you were to observe cold has in

Answers

If you want to observe stars in M31 while minimizing the effects of dust in its galactic plane, you would want to use a part of the electromagnetic spectrum that is less affected by dust absorption. In this case, you would choose a wavelength range where dust has less impact on the observations.

Infrared radiation is less affected by dust compared to visible light or shorter wavelengths. Dust particles tend to scatter and absorb shorter wavelengths more strongly, leading to reduced visibility. Infrared radiation, on the other hand, can penetrate through dust more easily, allowing observations of stars behind the dust clouds.

Therefore, to observe stars in M31 while minimizing the impact of dust, you would use the infrared part of the spectrum. Instruments and telescopes designed for infrared observations can detect and study stars even in the presence of dust.

To know more about stars here

https://brainly.com/question/15124953

#SPJ4

The specs of permanent magnet DC motor are as follow:

Nominal Voltage: 24 V
Stall Torque: 32 mN.m
Stall current (starting current): 0.58A
No load speed: 4000rpm
No load current: 14mA
Armature resistance (terminal resistance):41W
a) In the same graph plot the speed vs torque and the current vs torque and then find:
b) the torque constant, and the speed torque gradient (constant)
c) At maximum power what mass can be lifted by the motor if the motor shaft diameter is 5 mm ?

d) If the motor is driving a torque load of 10 mN.m, what would be the efficiency of the motor?

e) It desired to control the direction and rotation speed of this motor by using PWM (pin 6) of Arduino microcontroller. The frequency of PWM is 500Hz.

j. Design a complete power drive to interface the motor with the microcontroller. And write the code for Arduino

The specs of permanent magnet DC motor are as follow:

Nominal Voltage: 24 V
Stall Torque: 32 mN.m
Stall current (starting current): 0.58A
No load speed: 4000rpm
No load current: 14mA
Armature resistance (terminal resistance):41W
a) In the same graph plot the speed vs torque and the current vs torque and then find:
b) the torque constant, and the speed torque gradient (constant)
c) At maximum power what mass can be lifted by the motor if the motor shaft diameter is 5 mm ?

d) If the motor is driving a torque load of 10 mN.m, what would be the efficiency of the motor?

e) It desired to control the direction and rotation speed of this motor by using PWM (pin 6) of Arduino microcontroller. The frequency of PWM is 500Hz.

j. Design a complete power drive to interface the motor with the microcontroller. And write the code for Arduino

Answers

a) Graph between speed and torque:The following is the graph for the relationship between the speed and the torque of the DC motor:

Graph between current and torque The following is the graph for the relationship between the current and the torque of the DC motor

b) Torque constant:It is defined as the ratio of the torque produced by the motor to the armature current.The formula to calculate the torque constant is given as:

T = Kt  IaWhere,T = TorqueKt = Torque ConstantIa = Armature CurrentThus, the torque constant is given as:Kt = T / Ia = 32 / 0.58 = 55.17 mN.m/A.The speed torque gradient (constant) can be defined as the gradient of the line representing the torque-speed curve of the motor.

It is given as:

Slope = (No load speed - Stall speed) / Stall torqueThe no-load speed is given as 4000 rpm and stall speed is given as zero rpm.

Slope = (4000 - 0) / 0.032 = 1.25  10^5 rpm/mN.m.c) At maximum power, the motor delivers maximum output power, which can be calculated as:

Pmax = (V  V) / 4  R  Where,R = Terminal Resistance = 41ΩV = Nominal Voltage = 24 VNow, Pmax can be calculated as:Pmax = (24  24) / 4  41 = 34.56 WThe power can be used to lift the mass can be calculated as:Power = Force  Velocity= Mass  g  VelocityPower = PmaxVelocity = (Pmax / (Mass  g))Thus.

The maximum mass that can be lifted by the motor is given as:

Mass = Pmax / (Velocity  g)Where, g = Acceleration due to gravity = 9.81 m/s^2= 34.56 / (0.038  9.81) = 92.18 kg.d) The efficiency of the motor can be given as:η = (T  ω) / (T  ω + VIa)Where,ω = SpeedT = TorqueV = VoltageIa = Current Now, substituting the given values,η = (32  2π  4000) / (32  2π  4000 + 24  0.58)η = 94.8%.

e) Power Drive to interface with Microcontroller:

The power drive can be designed using the L298 motor driver. The pinout and connections of the L298 can be given as follows:Pin1, Pin15, and Pin9 - Connected to VccPin2, Pin10, and Pin16 - Connected to GndPin3, Pin6, Pin11, and Pin14 - Connected to microcontrollerPin4 and Pin5 - Connected to one end of the motor coilPin13 and Pin12 - Connected to another end of the motor coilCode for Arduino.

About Torque

Torque is the equivalent value of rotation at linear force. The existence of torque is represented in a simple form, namely as a coil around an object. The concept of torsion begins with Archimedes' experiments with a lever, namely a lever. In general, torque can be thought of as a rotational force.

Learn More About Torque at https://brainly.com/question/17512177

#SPJ11

Other Questions
The market for used phones is perfectly competitive without externalities. Market demand isQ=201-2P and Market Supply is P=2Q+5. Suppose the Marginal Willingness to Pay (MWTP) increases by $10 at every quantity. What is market Consumer Surplus after this increase in MWTP? (Note: this question is not asking for thechange in CS, just the CS after the increase in MWTP)? "Your brother wants to borrow $9,750 from you. He has offered topay you back $13,000 in a year. If the cost of capital of thisinvestment opportunity is 10%, what is its NPV? Problem 5: A charge of +25.0 C is travelling at a speed of 5.0x106 m/s within the presence of an externalmagnetic field of unknown magnitude which is pointing to from right to the left. The velocity of the particle ispointing upwards. The magnetic force on the charge is measured to be 2.5x10-2 N.a. Find the magnitude of the magnetic field.b. Using the right hand rule determine the direction of FB for this positive charge. What would the direction of FBbe if the charge was negative?c. Now assume an electric field of strength 500 N/C is turned on which points outside the page (coming out of thepage) What is the magnitude electric force in N this charge feels and its direction?d. What would the magnitude of the total (net) force in N be on this charge by both the magnetic FB and electricforce FE? 6. Which is the total cost of 3.5 pounds of grapes at $2.10 a pound? a. $5.60 b. $6.35 c. $7.04 d. \$7.35 7. Which is the product of $31101 ? a. \$1313 b. $3,131 c. $3,100 d. $7.35 8. Ryan bought a phone with an original price of $145.80. He received a 25% discount off the phone, which amounted to $36.45. How much did he pay for the phone? * a. $109.35 b. $119.45 c. $171.25 d. $182.25 Which of the following is an example of what Aristotle called a universal?-The property of being red.-This particular piece of paper-The state of Indiana-The atom Please help with this geometry question what are the important mechanisms that reverse the effects of a recession in a modern economy? (check all that apply.) How much would a business have to invest in a high-growth fund to receive $10,000 every month for 5 years, receiving the first payment 2 years from now? The investment earns interest at 6.50% compounded monthly. The orbital speed of a star about the center of the Milky Way is determined by its distance from the galactic center and the amount of galactic mass within its orbital distance. The orbital speed of our sun is about 220 km/s. It is possible to observe a nearby star moving with a speed (observed by us) in which of the following ranges: 1. 10 - 40 km/s II. 100-300 km/s III. > 1000 km/s I, II and III I only Il only I and II The price of a stock is currently $38. Over the course of the next year, the price is anticipated to rise to $41 or decline to $36. If the upside has a 65% probability of occurring and the risk free interest rate is 3%, what is the price of a six month call option with an exercise price of $35 using the binomial model?$3.89$4.25$4.70$4.18 Several years ago, two companies merged. One of the concerrs after the merger was the increasing burden of retiement expendiures. An effort was made io encourage ernployees to participaie in the 401(k) accounts. Nationwide. 64% of eigble workers participsted in theso acoounts. The accomperying data fable contans responses of 30 employees of the company when asked if they were currently participating in 4401( K) account. Complote parts a through d. Click the icon to vew the data table. a. Determine the sample proportion of company workers who participste in 401(k) accounts The sample proportion is (Round to three decinal places as needed) b. Determine the sampling erot if in reality the company workers have the same proportion of parficipants in 401(k) accounts as toes the rest of Be nation. The error is (Round to three decimal places as needed) c. Determine the probabaly that a sample proportica at least as large as that obtained in the sample would be obtained at the compary/s workers have the same proportion of participants in the 401(x) accounts as does the fost of the nation. The probabily is (Round to four decimal places as needed.) d. Does it appear that a larger proportion of company workers participate in 401(k) accounts than do the woekers of the nation as a whole? Support your response. because there is a i chance of obtaining a sample proporfon arester than the one calculated in part a \& the sooulation orocortion is 64%. arest percent as needed.) What did Wester and colleagues (2010) discover about male law enforcement officers' help-seeking behavior?a. Men who recognized the potential benefits of counseling were significantly more likely to pursue counseling.b. While many men recognized the potential threats to their masculinity by pursuing counseling, these were outweighed by the perceived mental health benefits.c. While many men recognized the potential benefits of counseling, these were outweighed by perceived threats to their masculinity.d. For male law enforcement officers, gender role conflict does not serve as a barrier to help-seeking behavior. Each airplane has capacity for 200 passengers, and overbooking is a common practice in these industries. According to the historical data, each passenger will attend a flight with probability p attend = 0.9. What is the maximum number of tickets the airline can sell to ensure that no one is left behind with probability 0.75? (Hint: Use Chebychevs inequality, roots of 0.9x^2 +0.6x200 = 0 are 15.24 and 14.58) 200 g of water is heated and its temperature goes from 280 K to300 K. What was the change in enthalpy for this process?A. 167,200 JB. 16,720 JC. 1,672 JD. 8,840 J Show that if we had a polynomial-time algorithm for computing thelength of the shortest TSP (traveling salesman problem) tour, then wewould have a polynomial-time algorithm for nding the shortest TSPtour. Be sure to address the concept of degeneracy, that is, when theremight be two or more tours of the same length, possibly involving someof the same edges. Two Strength and weakness of housing policy concerning minimumwage in the united states. Experiments are often impossible to implement because some treatments are too important to be decided by researchers difficult to explain in public difficult to collect sufficient control variables may not "scale up" Instructions: Read each statement below carefully. Place a T on the line if you think a statement it TRUE. Place an F on the line if you think the statement is FALSE 1. The rate of exchange between certain future dollars and certain current dollars is known as the pure rate of interest.___2. An investment is the current commitment of dollars over time to derive future payments to compensate the investor for the time funds are committed, the expected rate of inflation and the uncertainty of future payments.___3. A dollar received today is worth less than the same dollar received in the future ___.4. The three components of the required rate of return are the nominal interest rate, an inflation premium, and a risk premium___.5. Participants in primary capital markets that gather funds and channel them to borrowers are called financial intermediaries.___ 6. Diversification with foreign securities can help reduce portfolio risk.___ 7. The total domestic return on German bonds is the return that would be experienced by a U.S. investor who owned German bonds.___8. If the exchange rate effect for Japanese bonds is negative, it means that the domestic rate of return will be greater than the U.S. dollar return___ 9. The gifting phase is similar to and may be concurrent with, the spending phase.___ 10. Long-term, high-priority goals include some form of financial independence.___ 600 - 1000 word assignmentWhat is your definition of the pricing strategiesElement 2: There are several pricing strategies, explain the strategies that you think it is important and in which context of industries it can be applied. The report heuristic "pauses convey importance," deals with which aspect of content and style? Multiple Choice O Organize O Deliver O Visualize O Practice O Compile