Suppose a function y is defined implicitly in terms of the variable x. Find each of the following derivatives with respect to x. Enter your answers in terms of x,y, and dy/dx.

For example: if d/dx(3x+5y^2)=3+10y^4⋅dy/dx

(a) d/dx(6x+3y) =_____
(b) d/dx(5y^4+2x^3) =______
(c) d/dx(x^5y^4)= ______

Answers

Answer 1

(a) d/dx(6x+3y) = 6 + 3(dy/dx)

(b) d/dx(5y^4+2x^3) = 6x^2 + 20y^3(dy/dx)

(c) d/dx(x^5y^4) = 5x^4y^4(dy/dx) + 4x^5y^3

In each case, we can apply the chain rule of differentiation to find the derivative with respect to x. The chain rule states that if y is defined implicitly in terms of x, then the derivative of y with respect to x can be found by multiplying the derivative of y with respect to x by the derivative of x with respect to x (which is 1). This is represented as dy/dx.

In part (a), the derivative of 6x with respect to x is simply 6, as the derivative of a constant multiplied by x is the constant itself. For the term 3y, we apply the chain rule and multiply the derivative of y with respect to x (dy/dx) by 3. Therefore, the derivative of 6x+3y with respect to x is 6 + 3(dy/dx).

In part (b), the derivative of 5y^4 with respect to x is 0, as y^4 does not involve x. For the term 2x^3, the derivative with respect to x is 6x^2. Applying the chain rule to the term 2x^3, we multiply the derivative 6x^2 by the derivative of y with respect to x (dy/dx) for the term involving y. Therefore, the derivative of 5y^4+2x^3 with respect to x is 6x^2 + 20y^3(dy/dx).

In part (c), we have a product of two variables x^5 and y^4. Applying the product rule, the derivative of x^5y^4 with respect to x is given by 5x^4y^4(dy/dx) + 4x^5y^3. The first term results from differentiating x^5 with respect to x and multiplying it by y^4, and then multiplying it by dy/dx. The second term arises from differentiating y^4 with respect to x and multiplying it by x^5.

Learn more about differentiation click here: brainly.com/question/33446080

#SPJ11


Related Questions

Use the form of the definition of the integral given in Theorem 4 to evaluate the integral. I 0∫2 ​3xdx

Answers

The integral of 3x with respect to x, evaluated from 0 to 2, is equal to 12.

The integral of a function over an interval can be evaluated using the definition of the integral. The integral of 3x with respect to x from 0 to 2 can be computed as follows:

∫[0,2] 3x dx = lim (n→∞) Σ[1,n] (3xi)Δx,

where xi represents the sample points and Δx is the width of each subinterval.

Since we are integrating over the interval [0, 2], we can choose n subintervals of equal width Δx = (2 - 0)/n = 2/n.

The sum becomes Σ[1,n] (3xi)(2/n), where xi represents the sample points within each subinterval.

Taking the limit as n approaches infinity, we can simplify the sum to an integral:

∫[0,2] 3x dx = lim (n→∞) Σ[1,n] (6xi/n).

By recognizing that this sum is a Riemann sum, we can evaluate the integral:

∫[0,2] 3x dx = lim (n→∞) (6/n) Σ[1,n] xi.

The Riemann sum converges to the definite integral, and in this case, Σ[1,n] xi represents the sum of equally spaced sample points within the interval [0, 2].

Since the sum of xi from 1 to n is equivalent to the sum of the integers from 1 to n, we have:

∫[0,2] 3x dx = lim (n→∞) (6/n) (n(n+1)/2).

Simplifying further:

∫[0,2] 3x dx = lim (n→∞) 3(n+1).

Taking the limit as n approaches infinity:

∫[0,2] 3x dx = 3(∞ + 1) = 3.

Therefore, the integral of 3x with respect to x, evaluated from 0 to 2, is equal to 3.

To learn more about integral  click here

brainly.com/question/31433890

#SPJ11


Assume that A is true, B is true, C is false, D is false What is
the truth value of this compound statement? (C ∨ B) → (~A • D)

Answers

The truth value of the compound statement (C ∨ B) → (~A • D) is false.

To determine the truth value of the compound statement (C ∨ B) → (~A • D), we can evaluate each component and apply the logical operators.

A is true,

B is true,

C is false,

D is false.

C ∨ B:

Since C is false and B is true, the disjunction (C ∨ B) is true because it only requires one of the operands to be true.

~A:

Since A is true, the negation ~A is false.

~A • D:

Since ~A is false and D is false, the conjunction ~A • D is false because both operands must be true for the conjunction to be true.

(C ∨ B) → (~A • D):

Now we can evaluate the implication (C ∨ B) → (~A • D) by checking if the antecedent (C ∨ B) is true and the consequent (~A • D) is false. If this condition holds, the implication is false; otherwise, it is true.

In this case, the antecedent (C ∨ B) is true, and the consequent (~A • D) is false, so the truth value of the compound statement (C ∨ B) → (~A • D) is false.

To learn more about compound statement visit : https://brainly.com/question/28794655

#SPJ11

In a class the average in a certain quiz is 95 out of 100. You pick a student uniformly at random. What is the best upper bound can you give on the probability that the grade of that student is at most 50 . Hint: Since you only know the mean, there is only one inequality that might apply. Let X be the grade of the randomly chosen student. Express the event {X≤50} as {g(X)≥c} for some number c and some non-negative random variable g(X). 1/2 1/10 1/4 1/50

Answers

The best upper bound on the probability that the grade of the student is at most 50 is 1/50.

Since the average grade in the class is 95 out of 100, we can use the Chebyshev's inequality to obtain an upper bound on the probability of a student's grade being below a certain threshold. Chebyshev's inequality states that for any non-negative random variable, the probability that it deviates from its mean by k or more standard deviations is at most 1/k^2.

Let X be the grade of the randomly chosen student. We want to find c and a non-negative random variable g(X) such that the event {X ≤ 50} can be expressed as {g(X) ≥ c}. In this case, we can choose g(X) = 100 - X and c = 50. Therefore, the event {X ≤ 50} is equivalent to {g(X) ≥ 50}.

Now, applying Chebyshev's inequality, we have:

P(g(X) ≥ 50) ≤ 1/k^2

Since we want to find the best upper bound, we want to minimize k. In this case, k represents the number of standard deviations the grade of the student can deviate from the mean. To maximize the upper bound, we want k to be as small as possible.

We know that the minimum value that X can take is 0, and the maximum value it can take is 100. Therefore, the standard deviation of X is at most 100/2 = 50. We can set k = 1, as it gives the smallest possible value.

P(g(X) ≥ 50) ≤ 1/1^2 = 1

Thus, the best upper bound on the probability that the grade of the student is at most 50 is 1/1 = 1.

Conclusion: The best upper bound on the probability that the grade of the student is at most 50 is 1, indicating that it is guaranteed that the student's grade is at most 50.

To know more about probability follow the link:

https://brainly.com/question/29508746

#SPJ11

Heather, Felipe, and Ravi sent a total of 97 text messages over their cell phones during the weekend, Ravi sent 7 fewer messages than Heather, Feipe sent 4 times as many messages as Ravi. How many messages did they each send? Number of text messages Heather sent: Number of text messages Felipe sent: Number of text messages Ravi sent:

Answers

Number of text messages Heather sent: 32

Number of text messages Felipe sent: 48

Number of text messages Ravi sent: 17

Let's assume the number of messages Heather sent as 'x'. According to the given information, Ravi sent 7 fewer messages than Heather, so Ravi sent 'x - 7' messages. Felipe sent 4 times as many messages as Ravi, which means Felipe sent '4(x - 7)' messages.

Now, we know that the total number of messages sent by all three is 97. Therefore, we can write the equation:

x + (x - 7) + 4(x - 7) = 97

Simplifying the equation, we get:

6x - 35 = 97

6x = 132

x = 22

Hence, Heather sent 22 messages.

Substituting this value back into the equations for Ravi and Felipe, we find:

Ravi sent x - 7 = 22 - 7 = 15 messages.

Felipe sent 4(x - 7) = 4(22 - 7) = 4(15) = 60 messages.

Learn more about Messages

brainly.com/question/31088005

#SPJ11

Energy in = Energy out In the lectures, we use this law to build the "Bare Rock Climate Model". S(1−α)πR 2=σT 4 4πR 2 Where S,T, and α are defined in earlier questions. You are given that σ=5.67×10 −8 Watts /m 2/K 4 ,π=3.14 and R is the radius of the Earth (6378 km or 6378000 m). The albedo is 0.3. As we did in the lecture, solve for "T" (in units of Kelvin). 255 K 0C −273K

Answers

The value of T, representing the temperature in Kelvin, is approximately 255 K. To solve for T in the equation S(1−α)πR^2 = σT^4/(4πR^2), we can rearrange the equation and isolate T.

Given that σ = 5.67×10^-8 Watts/m^2/K^4, π = 3.14, R is the radius of the Earth (6378 km or 6378000 m), and α (albedo) is 0.3, we can substitute these values into the equation and solve for T.

First, we simplify the equation:

S(1−α)πR^2 = σT^4/(4πR^2)

We can cancel out the πR^2 terms on both sides:

S(1−α) = σT^4/4

Next, we rearrange the equation to solve for T:

T^4 = 4S(1−α)/σ

Taking the fourth root of both sides:

T = (4S(1−α)/σ)^(1/4)

Substituting the given values:

T = (4S(1−0.3)/(5.67×10^-8))^(1/4)

Calculating the expression:

T ≈ 255 K

Learn more about Temperature here : brainly.com/question/30762930

#SPJ11

Need Help with #3 , I cant seem to figure it out.

Answers

The output value of (gof)(2) is equal to -28

What is a function?

In Mathematics and Geometry, a function is a mathematical equation which defines and represents the relationship that exists between two or more variables such as an ordered pair in tables or relations.

Next, we would determine the corresponding composite function of f(x) and g(x) under the given mathematical operations (multiplication) in simplified form as follows;

g(x) × f(x) = x² × (-5x + 3)

g(x) × f(x) = -5x³ + 3x²

Now, we can determine the output value of the composite function (gof)(2) as follows;

(gof)(x) = -5x³ + 3x²

(gof)(2) = -5(2)³ + 3(2)²

(gof)(2) = -40 + 12

(gof)(2) = -28

Read more on function here: https://brainly.com/question/10687170

#SPJ1

1. Emiliano buys a bag of cookies that contains 7 chocolate chip cookies, 7 peanut butter cookies, 9 sugar cookies and 6 oatmeal cookies. What is the probability that Emiliano randomly selects an oatmeal cookie from the bag, eats it, then randomly selects a peanut butter cookie?

Express you answer as a reduced fraction.

2. A bag contains 4 gold marbles, 6 silver marbles, and 22 black marbles. You randomly select one marble from the bag. What is the probability that you select a gold marble? Write your answer as a reduced fraction.

PP(gold marble) =

3. Suppose a jar contains 14 red marbles and 34 blue marbles. If you reach in the jar and pull out 2 marbles at random, find the probability that both are red. Write your answer as a reduced fraction.

Answer:

4. From a group of 12 people, you randomly select 2 of them.

What is the probability that they are the 2 oldest people in the group?

Answers

The probability of selecting an oatmeal cookie and then a peanut butter cookie is 21/812.

The probability of selecting an oatmeal cookie first is 6/29 (since there are 6 oatmeal cookies out of 29 total cookies). After eating the oatmeal cookie, there will be 5 oatmeal cookies left out of 28 total cookies. The probability of selecting a peanut butter cookie next is 7/28 (since there are 7 peanut butter cookies left out of 28 total cookies). Therefore, the probability of selecting an oatmeal cookie and then a peanut butter cookie is:

(6/29) * (7/28) = 21/812

So, the probability is 21/812.

The probability of selecting a gold marble is 4/32 (since there are 4 gold marbles out of 32 total marbles). This can be simplified to 1/8, so the probability is 1/8.

The probability of selecting a red marble on the first draw is 14/48 (since there are 14 red marbles out of 48 total marbles). After the first marble is drawn, there will be 13 red marbles left out of 47 total marbles. The probability of selecting a red marble on the second draw, given that a red marble was selected on the first draw, is 13/47. Therefore, the probability of selecting two red marbles is:

(14/48) * (13/47) = 91/1128

So, the probability is 91/1128, which can be further simplified to 13/162.

The probability of selecting the oldest person in the group is 1/12. After the oldest person is selected, there will be 11 people left in the group, including the second oldest person. The probability of selecting the second oldest person from the remaining 11 people is 1/11. Therefore, the probability of selecting the 2 oldest people in the group is:

(1/12) * (1/11) = 1/132

So, the probability is 1/132.

Learn more about "Probability" :  https://brainly.com/question/3830279

#SPJ11

Suppose X ∼ Poisson(λ), where λ > 0 is the mean parameter of X, and Y is a Bernoulli random variable with P[Y =1]=p and P[Y=0]=1−p.

(a) Calculate the moment generating function of Y .

(b) Assuming X and Y are independent, find the moment generating function of Z = X + Y . By differentiating the moment generating function of Z an appropriate number of times , find the mean and variance of Z.

(c) Determine the probability mass function of the conditional distribution Y |Z = z.

(d) Determine the probability mass function of the conditional distribution X|Z = z.

Answers

(a) Moment generating function of Y is given by GY(t)=E[etY]=(1-p)+pet (b)Mean of Z=E[Z]=λ+p, Variance of Z=V[Z]=λ+p(1-p) (c)P[Y=y|Z=z]=P[X=z-y]ppz-y, y=0,1 (d),P[X=x|Z=z]=e^(-λ)λ^x/x!(p^(z-x))(1-p)^(1-z+x), x=0,1,2,…, min(z,λ).

(a) Moment generating function of X+Y is given by GX+Y(t)=E[e^(t(X+Y))]=E[e^(tX)×e^(tY)]=E[e^(tX)]E[e^(tY)](independence of X and Y)=e^(λ(e^t-1))×(1-p)+pe^t. Using the moment generating function, we can find the first and second moments of the random variable Z = X + Y. By taking the first derivative of the moment generating function and setting t = 0, we can get the first moment. Taking the second derivative of the moment generating function and setting t = 0 will give us the second moment.

(b) Mean and variance of Z; Mean of Z=E[Z]=λ+p, Variance of Z=V[Z]=λ+p(1-p)

(c)Let the event Z = z, then the pmf of Y given Z=z is given by P[Y=y|Z=z]=P[X+Y=z-Y|Z=z]P[Y=y|X=z-Y]P[X=z-y]P[Y=1|X=z-y]P[X=z-y]P[Y=0|X=z-y]Now, by the given problem, Y is a Bernoulli random variable. Thus, probability P[Y=1|X=z-y]=p, P[Y=0|X=z-y]=1−p. The above equation reduces to P[Y=y|Z=z]=P[X=z-y]ppz-y, y=0,1

(d)For X|Z=z, we haveP[X=x|Z=z]=P[X=x,Y=z-x]/P[Z=z]NowP[Z=z]=Σxp(z-x)The above equation simplifies toP[X=x|Z=z]=P[X=x]P[Y=z-x]/p(z)As X ~ Poisson(λ), P[X=x]=e^(-λ)λ^x/x!, x = 0,1,2,….Substituting in above expression,P[X=x|Z=z]=e^(-λ)λ^x/x!(p^(z-x))(1-p)^(1-z+x), x=0,1,2,…, min(z,λ).

Let's learn more about Variance:

https://brainly.com/question/9304306

#SPJ11

You've collected the following historical rates of return for stocks A and B : - Attempt 1/5 for 10 pts. What was the average annual return for stock A
r
A




A

=
3
r
1

+r
2

+r
3




=
3
0.02+0.08+0.19


=0.0967

Part 2 EI in Atfernpt t/s for 10 pts. What was the average annual return for stock B? Correct 4
r
ˉ

11

=
3
r
1

+r
2

+r
3




=
3
0.02+0.05+0.07


=0.04667

What was the standard deviation of returns for stock A? What was the standard deviation of returns for stock B?

Answers

We are given the following historical rates of return for stocks A and B:  We can use the formula of average return to find the average annual return for stock A, which is as follows: are the rates of return for stock A.

On substituting the given values, Therefore, the average annual return for stock A is 0.0967.To find the standard deviation of returns, we can use the formula of standard deviation which is as follows .

For stock A: Therefore, the standard deviation of returns for stock A is 0.085.For stock B: Therefore, the standard deviation of returns for stock B is 0.0335. where $r$ is the rate of return, $\bar r$ is the average return, $N$ is the total number of observations and $\sigma$ is the standard deviation.

To know more about average annual return visit :

https://brainly.com/question/30714832

#SPJ11

In general, what is the relationship between the standard deviation and variance?
a. Standard deviation equals the squared variance.
b. Variance is the square root of the standard deviation.
c. Standard deviation is the square root of the variance.
d. These two measures are unrelated.

Answers

The relationship between the standard deviation and variance is that the standard deviation is the square root of the variance.

The correct option is -C

Hence, the correct option is (c) Standard deviation is the square root of the variance. Variance is the arithmetic mean of the squared differences from the mean of a set of data. It is a statistical measure that measures the spread of a dataset. The squared difference from the mean value is used to determine the variance of the given data set.

It is represented by the symbol 'σ²'. Standard deviation is the square root of the variance. It is used to calculate how far the data points are from the mean value. It is used to measure the dispersion of a dataset. The symbol 'σ' represents the standard deviation. The formula for standard deviation is:σ = √(Σ(X-M)²/N) Where X is the data point, M is the mean value, and N is the number of data points.

To know more about variance visit:

https://brainly.com/question/14116780

#SPJ11

A small company of science writers found that its rate of profit​ (in thousands of​ dollars) after t years of operation is given by P′(t)=(3t+6)(t^2+4t+9)^1/5. ​(a) Find the total profit in the first three years.​(b) Find the profit in the fifth year of operation.
(c) What is happening to the annual profit over the long​ run?

Answers

To find the total profit in the first three years, we need to integrate the rate of profit function P'(t) over the interval [0, 3].

Using the given equation P'(t) = (3t + 6)(t^2 + 4t + 9)^1/5, we can integrate it with respect to t over the interval [0, 3]. The result will give us the total profit in the first three years.

To find the profit in the fifth year of operation, we can evaluate the rate of profit function P'(t) at t = 5. Using the given equation P'(t) = (3t + 6)(t^2 + 4t + 9)^1/5, we substitute t = 5 into the equation and calculate the result. This will give us the profit in the fifth year.

To determine what is happening to the annual profit over the long run, we need to analyze the behavior of the rate of profit function P'(t) as t approaches infinity.

Specifically, we need to examine the leading term(s) of the function and how they dominate the growth or decline of the profit. Since the given equation for P'(t) is (3t + 6)(t^2 + 4t + 9)^1/5, we observe that as t increases, the dominant term is the one with the highest power, t^2. As t approaches infinity, the rate of profit becomes increasingly influenced by the term (3t)(t^2)^1/5 = 3t^(7/5).

Therefore, over the long run, the annual profit is likely to increase or decrease depending on the sign of the coefficient (positive or negative) of the dominant term, which is 3 in this case. Further analysis would require more specific information or additional equations to determine the exact behavior of the annual profit over the long run.

Learn more about integration here:

brainly.com/question/31744185

#SPJ11

In a survey given to a random sample of 392 colloge students throughout the US, 75 report having no sibling4. Follow the siups ouflined beion io estimate the proportion of aff college students in the US with no siblings. U50 SE =0.022 Find a 95 क. confidence interval for the proportion described. In the NEXT question, answor the foliowing question parts. Clearly label each part. You are not required io ahow work on thece questions. Answors are sufficient. A. Find the margin of orror of your confidence interval to three decimal places. Show the formula you used with numbers (not notation) and the calculated number. B. Give the confidence interval, with ondpoints to three decimal places. C. Interpret the confidence interval, in context. D. From census data, the proportion of all adults in the US without siblings is known to be 15%. Is there evidence that the proportion of college students without siblings is different from the proportion of all adults without siblings? Explain how you know based on your confidence interval. THIS question, write ONLY the z∗ or f critical value you used in your confidence interval. Give a numeric value only, to three decimal places. not include any labels or notation.

Answers

A. The margin of error is 0.043. B. The confidence interval is (0.148, 0.234). C. We estimate that between 14.8% and 23.4% of college students in the US have no siblings. D. Z* value used in the confidence interval: 1.96

A. The margin of error can be calculated using the formula:

Margin of Error = Critical Value * Standard Error

The critical value can be determined based on the desired confidence level. Since the confidence level is not specified in the question, I will assume a 95% confidence level.

Using a 95% confidence level, the critical value (z*) is approximately 1.96 (standard normal distribution).

The standard error (SE) is given as 0.022.

Margin of Error = 1.96 * 0.022

= 0.04312

Rounded to three decimal places, the margin of error is 0.043.

B. The confidence interval can be calculated by subtracting and adding the margin of error to the sample proportion.

Sample Proportion = 75/392 = 0.191

Lower Bound = Sample Proportion - Margin of Error

= 0.191 - 0.043 = 0.148

Upper Bound = Sample Proportion + Margin of Error

= 0.191 + 0.043 = 0.234

Rounded to three decimal places, the confidence interval is (0.148, 0.234).

C. Interpretation: We are 95% confident that the true proportion of all college students in the US with no siblings lies between 0.148 and 0.234. This means that based on the sample data, we estimate that between 14.8% and 23.4% of college students in the US have no siblings.

D. To determine if there is evidence that the proportion of college students without siblings is different from the proportion of all adults without siblings, we can compare the confidence interval to the known proportion of all adults without siblings.

The known proportion of all adults without siblings is 15%.

Based on the confidence interval (0.148, 0.234), which does not include the value of 0.15, we can conclude that there is evidence to suggest that the proportion of college students without siblings is different from the proportion of all adults without siblings.

The confidence interval does not overlap with the known proportion, indicating a statistically significant difference.

Z* value used in the confidence interval is 1.96

To read more about error, visit:

https://brainly.com/question/30760250

#SPJ11

please Help quick due soon​

Answers

Given:

AB=DC

AB PARALLEL DC

Prove:

ABC CONGRUNENT CDA

Step-by-step explanation:

Since

AB=DC

AB PARALLEL DC

So, ABCD is a parallelogram

and we know diagonal divide it into two congruent triangle

Suppose that over a certain region of space the electrical potential V is given by the following equation. V(x,y,z)=3x2−4xy+xyz (a) Find the rate of change of the potential at P(6,6,6) in the direction of the vector v=i+j−k. (b) In which direction does V change most rapidly at P ? (c) What is the maximum rate of change at P ?

Answers

The rate of change is approximately 30.164. The direction in which V changes most rapidly at P is (78,12,36). The maximum rate of change at P is approximately 82.006.

(a) To find the rate of change of the potential at point P(6,6,6) in the direction of vector v=i+j-k, we need to calculate the dot product of the gradient of V at P and the unit vector in the direction of v. The gradient of V is given by ∇V = (∂V/∂x)i + (∂V/∂y)j + (∂V/∂z)k.

Taking partial derivatives of V with respect to x, y, and z, we have ∂V/∂x = 6x - 4y + yz, ∂V/∂y = -4x + xz, and ∂V/∂z = xy. Evaluating these partial derivatives at P(6,6,6), we find ∂V/∂x = 78, ∂V/∂y = 12, and ∂V/∂z = 36.

The rate of change of the potential at P in the direction of vector v is given by ∇V · (v/|v|), where |v| is the magnitude of v. Substituting the values, we have (78,12,36) · (1/√3, 1/√3, -1/√3) ≈ 30.164.

(b) The direction in which V changes most rapidly at point P is in the direction of the gradient ∇V, which is given by (∂V/∂x)i + (∂V/∂y)j + (∂V/∂z)k evaluated at P. Thus, the direction of maximum change at P is (78,12,36).

(c) The maximum rate of change at point P is equal to the magnitude of the gradient ∇V at P, which can be calculated as |∇V| = √((∂V/∂x)^2 + (∂V/∂y)^2 + (∂V/∂z)^2) evaluated at P. Substituting the values, we have |∇V| = √(78^2 + 12^2 + 36^2) ≈ 82.006

Learn more about dot product here:

brainly.com/question/23477017

#SPJ11

What is the remainder when 6 is divided by 4/3​

Answers

0.5 because 6/4/6=0.5

When 6 is divided by 4/3, the remainder is 6.

To find the remainder when 6 is divided by 4/3, we can rewrite the division as a fraction and simplify:

6 ÷ 4/3 = 6 × 3/4

Multiplying the numerator and denominator of the fraction by 3:

(6 × 3) ÷ (4 × 3) = 18 ÷ 12

Now we can divide 18 by 12:

18 ÷ 12 = 1 remainder 6

Therefore, when 6 is divided by 4/3, the remainder is 6.

for such more question on remainder

https://brainly.com/question/30329627

#SPJ8

You wish to test the following claim (Ha ) at a significance level of α=0.02. H 0:p 1 =p2Ha:p1>p 2
​ You obtain 41 successes in a sample of size n1 =302 from the first population. You obtain 26 successes in a sample of size n2=304 from the second population. For this test, you should NOT use the continuity correction, and you should use the normal distribution as an approximation for the binomial distribution. What is the test statistic for this sample? (Report answer accurate to three decimal places.) test statistic = What is the p-value for this sample?

Answers

The test statistic for this sample is approximately 1.995, and the p-value is approximately 0.023. Therefore, we do not have enough evidence to reject the null hypothesis at the α=0.02 significance level, suggesting that there is no strong evidence to support the claim that p₁ is greater than p₂.

Calculate the sample proportions for each population:

p₁ = 41/302 ≈ 0.1358

p₂ = 26/304 ≈ 0.0855

Calculate the standard error (SE) of the difference in sample proportions:

SE = √((p₁(1-p₁)/n₁) + (p₂(1-p₂)/n₂))

  = √((0.1358(1-0.1358)/302) + (0.0855(1-0.0855)/304))

  ≈ 0.0252

Calculate the test statistic:

test statistic = (p₁ - p₂) / SE

              = (0.1358 - 0.0855) / 0.0252

              ≈ 1.995

Determine the p-value:

Since we are testing the claim that p₁ > p₂, the p-value is the probability of observing a test statistic as extreme as 1.995 or greater. We look up this value in the standard normal distribution table or use a calculator, and find that the p-value is approximately 0.023.

Learn more About test statistic from the given link

https://brainly.com/question/15110538

#SPJ11

Von Krolock Ltd. is a company who sells waste incinerators to municipalities in Northern Europe. The company observes the number of incinerators on its hand (call it i ) at the beginning of a week. If at the beginning of week n, the inventory level i≤1; then the company orders 3−i incinerators (so, the number of inventories is completed to 3 ). If i≥2, then 0 incinerators are ordered. It is known that delivery of all ordered incinerators is received at the beginning of the week n. The number of incinerators demanded by customers during week n is a Poisson random variable with mean 2. After fulfilling these demands, the company observes the inventory level at the beginning of the next week (week n+1 ). Hint: If X is a Poisson random with parameter λ,P(X=x)= x!
(e ^−λ λ^x)/x! and E[X]=λ. 4 a) Define the states and construct the one step probability transition matrix for the above process. b) What proportion of time no inventories exists ( 0 units) on hand at the beginning of a typical week? c) What is the probability that a shortage occurs?


Answers

Approximately, the probability of shortage occurring in any given week is 37.46%.

a) State Transition Matrix is as follows: S(0,0) = P(I( n+1)= 0 | I(n) = 0)S(0,1) = P(I( n+1)= 1 | I(n) = 0)S(0,2) = P(I( n+1)= 2 | I(n) = 0)S(1,0) = P(I( n+1)= 0 | I(n) = 1)S(1,1) = P(I( n+1)= 1 | I(n) = 1)S(1,2) = P(I( n+1)= 2 | I(n) = 1)S(2,0) = P(I( n+1)= 0 | I(n) = 2)S(2,1) = P(I( n+1)= 1 | I(n) = 2)S(2,2) = P(I( n+1)= 2 | I(n) = 2)

b) Proportion of time no inventories exist on hand at the beginning of a typical week is obtained by multiplying the steady-state probabilities of the two states where I (n) = 0. P(I(n)=0)=π0Therefore, we need to solve for the steady-state probabilities as follows:π = π S...where π0 + π1 + π2 = 1,π = [π0, π1, π2] and S is the transition probability matrix.π = π Sπ(1) = π(0) S ⇒π(2) = π(1) S = (π(0) S) S = π(0) S^2Since π0 + π1 + π2 = 1,π0 = 1 - π1 - π2π(1) = π(0) S ⇒π(1) = π0S(1,0) + π1S(1,1) + π2S(1,2) = π0S(0,1) + π1S(1,1) + π2S(2,1)π(2) = π(1) S ⇒π(2) = π0S(2,0) + π1S(2,1) + π2S(2,2) = π0S(0,2) + π1S(1,2) + π2S(2,2)π0, π1, π2 are obtained by solving the following system of linear equations:{(1 - π1 - π2)S(0,0) + π1S(1,0) + π2S(2,0) = π0(1 - S(0,0))π1S(0,1) + (1 - π0 - π2)S(1,1) + π2S(2,1) = π1(1 - S(1,1))π1S(0,2) + π2S(1,2) + (1 - π0 - π1)S(2,2) = π2(1 - S(2,2))Solving, π0 = 0.4796, π1 = 0.3197, π2 = 0.2006, and P(I(n) = 0) = 0.4796c) Probability of shortage occurs:P(I( n+1) < 2 | I(n) = 2) = P(I( n+1) = 0 | I(n) = 2) + P(I( n+1) = 1 | I(n) = 2)Since we are starting from week n with two inventories and no incinerators are ordered, the number of incinerators I(n+1) demanded during week n+1 should not be greater than 2. If the number of incinerators demanded during week n+1 is greater than 2, there will be a shortage. Therefore, we need to calculate the probability that a Poisson random variable with parameter 2 is less than 2:P(X < 2) = P(X = 0) + P(X = 1) = (2^0 * e^-2) / 0! + (2^1 * e^-2) / 1! = 0.6767Hence,P(I( n+1) < 2 | I(n) = 2) = 0.0512 + 0.3234 = 0.3746 = 37.46%.

Let's learn more about probability:

https://brainly.com/question/25839839

#SPJ11

marked a increments of 5 s and the yertical axil in marked in increments st 1mil. (a) o th 10.00÷ min (8) 6 in 20−00= (c) 10.0000000.00 mes: (d)20.00 to 35.00 s miss (ie) 0 to 40.00 s

Answers

The given graph is a rectangular hyperbola graph because the product of the variables, that is x and y, is constant. The equation of a rectangular hyperbola is y=k/x. k is the constant value. The variables x and y are inversely proportional to each other.

Thus, as x increases, y decreases, and vice versa.GraphA rectangular hyperbola graph with labeled axesThe horizontal axis is labeled in increments of 5s. The vertical axis is labeled in increments of 1mil. a) On the graph, 10.00 ÷ min is 0.1mil. Thus, 10.00 ÷ min corresponds to a point on the graph where the vertical axis is at 0.1mil.b) At 6 in 20-00, the horizontal axis is 6, which corresponds to 30s.

The vertical axis is 20-00 or 2000mil, which is equivalent to 2mil. The coordinates of the point are (30s, 2mil).c) At 10.0000000.00 mes, the horizontal axis is at 100s. The vertical axis is 0, which corresponds to the x-axis. The coordinates of the point are (100s, 0).

d) From 20.00 to 35.00s, the vertical axis is at 4mil. From 20.00 to 35.00s, the horizontal axis is at 3 increments of 5s, which is 15s. The coordinates of the starting point are (20.00s, 4mil). The coordinates of the ending point are (35.00s, 4mil). The point on the graph is represented by a horizontal line segment at y=4mil from x=20.00s to x=35.00s. Similarly, from 0 to 40.00s, the coordinates of the starting point are (0, 10mil).

The coordinates of the ending point are (40.00s, 0). The point on the graph is represented by a curve from (0, 10mil) to (40.00s, 0).

For more information on  hyperbola graph visit:

brainly.com/question/30281625

#SPJ11

Use the given zero to find the remaining zeros of the function. h(x)=6x5+3x4+66x3+33x2−480x−240 zero: −4i The remaining zero(s) of h is(are) (Use a comma to separate answers as needed. Type an exact answer, using radicals as needed

Answers

The given zero is -4i. So the remaining zeros of the function h(x)=6x⁵+3x⁴+66x³+33x²−480x−240 are as follows:

Remaining zeros of h is(are) (Use a comma to separate answers as needed.

Type an exact answer, using radicals as needed).

This can be found out using the Complex Conjugate Theorem which states that if a complex number a + bi is a root of a polynomial equation with real coefficients, then its conjugate a - bi is also a root.

Here the given zero is -4i so its complex conjugate is +4i.

Therefore, the remaining zeros of the given function h(x) are:

Solution: Given function is h(x) = 6x⁵+3x⁴+66x³+33x²−480x−240.

Zero is -4i.Remaining zeros of h(x) = h(x) can be found out using the Complex Conjugate Theorem which states that if a complex number a + bi is a root of a polynomial equation with real coefficients, then its conjugate a - bi is also a root.

So, the remaining zeros of h(x) are:±2i.

To know more about Complex Conjugate Theorem visit:

https://brainly.com/question/14513881

#SPJ11

65% of owned dogs in the United States are spayed or neutered. Round your answers to four decimal places. If 47 owned dogs are randomly selected, find the probability that

a. Exactly 31 of them are spayed or neutered.
b. At most 30 of them are spayed or neutered.
c. At least 31 of them are spayed or neutered.
d. Between 29 and 37 (including 29 and 37) of them are spayed or neutered.

Answers

The probability that exactly 31 of the 47 owned dogs are spayed or neutered is 0.0894. The probability that at most 30 of the 47 owned dogs are spayed or neutered is 0.0226. The probability that at least 31 of the 47 owned dogs are spayed or neutered is 0.9774. The probability that between 29 and 37 (including 29 and 37) of the 47 owned dogs are spayed or neutered is 0.9488.

(a) The probability that exactly 31 of the 47 owned dogs are spayed or neutered can be calculated using the binomial distribution. The binomial distribution is a discrete probability distribution that can be used to model the number of successes in a fixed number of trials. In this case, the number of trials is 47 and the probability of success is 0.65. The probability that exactly 31 of the 47 owned dogs are spayed or neutered is 0.0894.

(b) The probability that at most 30 of the 47 owned dogs are spayed or neutered can be calculated using the cumulative binomial distribution. The cumulative binomial distribution is a function that gives the probability that the number of successes is less than or equal to a certain value. In this case, the probability that at most 30 of the 47 owned dogs are spayed or neutered is 0.0226.

(c) The probability that at least 31 of the 47 owned dogs are spayed or neutered is 1 - P(at most 30 are neutered). This is equal to 1 - 0.0226 = 0.9774.

(d) The probability that between 29 and 37 (including 29 and 37) of the 47 owned dogs are spayed or neutered can be calculated using the cumulative binomial distribution. The cumulative binomial distribution is a function that gives the probability that the number of successes is less than or equal to a certain value. In this case, the probability that between 29 and 37 (including 29 and 37) of the 47 owned dogs are spayed or neutered is 0.9488.

To learn more about binomial distribution click here : brainly.com/question/29137961

#SPJ11

c. Suppose that the asset specificity ranges from \( \alpha=0 \) to \( \alpha=100 \). Find the range of values of \( \alpha \) for which Keikei Plc prefers to make a part of the supply chain internall

Answers

Keikei Plc prefers to make a part of the supply chain internally when the asset specificity ranges from \( \alpha = 0 \) to \( \alpha = 100 \).

Asset specificity refers to the degree to which an asset is specialized and can only be used in a specific context or relationship. Keikei Plc's preference for internalizing a part of the supply chain depends on the range of values for asset specificity, denoted by \( \alpha \).

Given that \( \alpha \) ranges from 0 to 100, it means that Keikei Plc prefers to make a part of the supply chain internally for all values of \( \alpha \) within this range. In other words, Keikei Plc considers the asset specificity to be significant enough that internalizing the supply chain provides advantages such as control, efficiency, and protection of proprietary knowledge. By keeping the supply chain internally, Keikei Plc can fully leverage and utilize its specialized assets to maximize operational effectiveness and maintain a competitive edge in the market.

Learn more about asset  : brainly.com/question/14826727

#SPJ11

Differential of the function? W=x^3sin(y^5z^7)

dw=dx+dy+dz

Answers

The differential of the function w = x^3sin(y^5z^7) is dw = (3x^2sin(y^5z^7))dx + (5x^3y^4z^7cos(y^5z^7))dy + (7x^3y^5z^6cos(y^5z^7))dz.

The differential of the function w = x^3sin(y^5z^7) can be expressed as dw = dx + dy + dz.

Let's break down the differential and determine the partial derivatives of w with respect to each variable:

dw = ∂w/∂x dx + ∂w/∂y dy + ∂w/∂z dz

To find ∂w/∂x, we differentiate w with respect to x while treating y and z as constants:

∂w/∂x = 3x^2sin(y^5z^7)

To find ∂w/∂y, we differentiate w with respect to y while treating x and z as constants:

∂w/∂y = 5x^3y^4z^7cos(y^5z^7)

To find ∂w/∂z, we differentiate w with respect to z while treating x and y as constants:

∂w/∂z = 7x^3y^5z^6cos(y^5z^7)

Now we can substitute these partial derivatives back into the differential expression:

dw = (3x^2sin(y^5z^7))dx + (5x^3y^4z^7cos(y^5z^7))dy + (7x^3y^5z^6cos(y^5z^7))dz

Learn more about Partial derivatives here : brainly.com/question/15342361

#SPJ11

Each occupled uait requires an average of $35 per mosth foe service and repsin what rerit should be tharged to cblain a maximim profie?

Answers

To obtain maximum profit, the rent charged per unit should be set based on the average cost of service and repairs per unit, which is $55 per month.

By setting the rent at this amount, the landlord can ensure that all expenses related to maintaining and repairing the units are covered, while maximizing the profit generated from each occupied unit.

In order to determine the rent that should be charged to obtain maximum profit, it is important to consider the average cost of service and repairs per occupied unit. Since each unit requires an average of $55 per month for service and repairs, setting the rent at this amount would ensure that these expenses are fully covered. By doing so, the landlord can effectively maintain and repair the units without incurring any additional costs.

To calculate the maximum profit, it is necessary to consider the total revenue generated from the rented units and subtract the expenses. Assuming there are n occupied units, the total revenue would be n times the rent charged per unit. The total expenses would be the average cost of service and repairs per unit multiplied by the number of occupied units. Therefore, the maximum profit can be obtained by maximizing the difference between the total revenue and total expenses.

By setting the rent at $55 per unit, the landlord ensures that all expenses related to service and repairs are covered for each occupied unit. This allows for a balanced approach where the costs are adequately addressed, and the landlord can achieve maximum profit. It is important to regularly reassess the average cost of service and repairs per unit to ensure that the rent charged remains appropriate and profitable in the long run.

Learn more about Profit here:

brainly.com/question/32864864

#SPJ11

The events "subscribes to Style Bible" and "Subscribes to Runway" are mutually exclusive? Select one: True False 2.A magazine subscription service has surveyed 1462 people who subscribe to its most popular fashion magazines. It has found that the probability that a person subscribes to "Style Bible" is 0.45, the probability a person subscribes to 'Runway' is 0.25 and the probability a person has subscriptions to both magazines is 0.10. Using a contingency table or otherwise, determine the probability that a person has a subscription to "Style Bible" given that they have a subscription to "Runway".Give the answer to two decimal places, in the form

Answers

False.The events "subscribes to Style Bible" and "subscribes to Runway" are not mutually exclusive, as there is a non-zero probability that a person can subscribe to both magazines.

To determine if the events "subscribes to Style Bible" and "subscribes to Runway" are mutually exclusive, we need to check if they can occur together or not. If there is a non-zero probability that a person can subscribe to both magazines, then the events are not mutually exclusive.

Given the information provided, we know that the probability of subscribing to Style Bible is 0.45, the probability of subscribing to Runway is 0.25, and the probability of subscribing to both magazines is 0.10.

To calculate the probability that a person has a subscription to Style Bible given that they have a subscription to Runway, we can use the formula for conditional probability:

P(Style Bible|Runway) = P(Style Bible and Runway) / P(Runway)

P(Style Bible|Runway) = 0.10 / 0.25 = 0.40

Therefore, the probability that a person has a subscription to Style Bible given that they have a subscription to Runway is 0.40.

The events "subscribes to Style Bible" and "subscribes to Runway" are not mutually exclusive, as there is a non-zero probability that a person can subscribe to both magazines. The probability that a person has a subscription to Style Bible given that they have a subscription to Runway is 0.40.

To know more about  probability follow the link:

https://brainly.com/question/23417919

#SPJ11

The ages (in years) of the 6 employees at a particular computer store are the following. 46,30,27,25,31,33 Assuming that these ages constitute an entire population, find the standard deviation of (If necessary, consult a list of formulas.)

Answers

The standard deviation of the population is approximately 6.78 years.

We can use the formula below to determine a population's standard deviation:

The Standard Deviation () is equal to (x-2)2 / N, where:

The sum of, x, each individual value in the population, the mean (average) of the population, and the total number of values in the population are all represented by

The six employees' ages are as follows: 46, 30, 27, 25, 31, 33

To start with, we compute the mean (μ) of the populace:

= (46 + 30 + 27 + 25 + 31 + 33) / 6 = 192 / 6 = 32 The values are then entered into the standard deviation formula as follows:

= (46 - 32)2 + (30 - 32)2 + (27 - 32)2 + (25 - 32)2 + (31 - 32)2 + (33 - 32)2) / 6 = (142 + (-2)2 + (-5)2 + (-1)2 + 12) / 6 = (196 + 4 + 25 + 49 + 1 + 1) / 6 = (46)  6.78, which indicates that the population's standard deviation is approximately 6.78

To know more about  Standard deviation, visit

brainly.com/question/475676

#SPJ11

Write the composite function in the form f(g(x)). [Identify the inner function u=g(x) and the outer function y=f(u).] y=(2−x2)3 (g(x),f(u)) = ___( Find the derivative dy/dx. dy/dx ​= ___

Answers

The composite function is given by y = f(g(x)), where u = g(x) = 2 - x^2 and y = f(u) = u^3. The derivative of y with respect to x is dy/dx = (dy/du) * (du/dx).

In the given composite function, we have an inner function u = g(x) = 2 - x^2, and an outer function y = f(u) = u^3.

To find the derivative dy/dx, we use the chain rule. Firstly, we calculate the derivative of the outer function, which is (dy/du) = 3u^2. Next, we find the derivative of the inner function, which is (du/dx) = -2x.

Applying the chain rule, we multiply these derivatives together: dy/dx = (dy/du) * (du/dx) = 3u^2 * (-2x).

Substituting the value of u = 2 - x^2, we have dy/dx = 3(2 - x^2)^2 * (-2x).

Thus, the derivative of y with respect to x is dy/dx = 3(2 - x^2)^2 * (-2x).

To learn more about function  click here

brainly.com/question/30721594

#SPJ11

5 ordinary six-sided dice are rolled. What is the probability that at least one of the dice shows a \( 5 ? \) (Give your answer as a fraction.) Answer:

Answers

The probability that at least one of the five six-sided dice shows a 5 is \(1 - (\frac{5}{6})^5 = \frac{671}{7776}\).

The probability of at least one die showing a 5, we need to calculate the complement of the event where none of the dice show a 5. Each die has six possible outcomes, so the probability of a single die not showing a 5 is \(\frac{5}{6}\). Since all five dice are rolled independently, the probability of none of them showing a 5 is \((\frac{5}{6})^5\). Thus, the probability of at least one die showing a 5 is \(1 - (\frac{5}{6})^5\), which simplifies to \(\frac{671}{7776}\).

In other words, we subtract the probability of the complementary event from 1. The complementary event is that all five dice show something other than a 5. The probability of this happening for each die is \(\frac{5}{6}\), and since the dice are independent, we multiply the probabilities together. Subtracting this from 1 gives us the probability of at least one die showing a 5, which is \(\frac{671}{7776}\).

Learn more about probability  : brainly.com/question/31828911

#SPJ11

The Emotional Intelligence Quotient (EQ) score of a grade 8 class is normally distributed with a mean of 80 and a standard deviation of 20. A random sample of 36 grade 8 learners is selected. Let X be EQ score score of a grade 8 class. It is further known that the probability that the mean EQ score is between x and the population mean is 0.4918. Determine the value if x such that P(x << 80) = 0.4918. Choose the correct answer from the list of options below.
a. 84
b. 80
C. 78
d. 76
e 72

Answers

The given is the Emotional Intelligence Quotient (EQ) score of a grade 8 class is normally distributed with a mean of 80 and a standard deviation of 20, and a random sample of 36 grade 8 learners is selected. The value of x is to be determined such that P(x << 80) = 0.4918.

The population mean is given by μ = 80.The standard deviation of the sample is given by:σ/√n = 20/√36 = 20/6.∴ Standard Error = σ/√n = 20/6 ≈ 3.33.Now, we have to find the z-score associated with a tail probability of 0.4918/2 = 0.2459.Using the standard normal distribution table, we get that the z-value associated with a tail probability of 0.2459 is approximately 0.67.

Now, using the formula for z-score: z = (x - μ) / Standard Error 0.67 = (x - 80) / 3.33 0.67 x 3.33 = x - 80 2.2301 + 80 = x 82.2301 = xThus, the value of x is 82.2301. Therefore, the option (a) 84 and the solution is provided above.

To know more about quotient, visit:

https://brainly.com/question/16134410

#SPJ11

If Cov(X m,X n )=mn−(m+n), find Cov(X 1+X 2,X 3+X 4). Q.2 Starting at some fixed time, let F(n) denotes the price of a First Local Bank share at the end of n additional weeks, n≥1; and let the evolution of these prices assumes that the price ratios F(n)/F(n−1) for n≥1 are independent and identically distributed lognormal random variables. Assuming this model, with lognormal parameters μ=0.012 and σ=0.048, what is the probability that the price of the share at the end of the four weeks is higher than it is today?

Answers

1. The covariance between X1+X2 and X3+X4 is zero.

2. The probability that the price of the share at the end of the four weeks is higher than it is today is 0.9544 or 95.44%.

Q1) Cov(X1+X2, X3+X4) is to be found given that Cov(Xm, Xn) = mn−(m+n) where m and n are natural numbers.

Cov(X1+X2,X3+X4)

Now, X1+X2 and X3+X4 are independent, so their covariance will be zero.Therefore, Cov(X1+X2,X3+X4) = 0

Hence, the covariance between X1+X2 and X3+X4 is zero.

Q2) The evolution of prices assumes that the price ratios F(n)/F(n−1) for n≥1 are independent and identically distributed lognormal random variables and lognormal parameters μ=0.012 and σ=0.048 is given, we have to find the probability that the price of the share at the end of the four weeks is higher than it is today.

Let's consider the lognormal distribution formula, which is:

F(x;μ,σ) = (1 / (xσ√(2π))) * e^(- (ln(x) - μ)² / (2σ²))whereμ = 0.012 and σ = 0.048. x is the current price and x(4) is the price after four weeks.

The ratio F(4)/F(0) = F(4) / x is log-normally distributed with parameters μ = 4μ = 0.048 = 0.192 and σ² = 4σ^2 = 0.048² * 4 = 0.009216.

The required probability isP(F(4) > x) = P(ln(F(4)) > ln(x)) = P(ln(F(4)/x) > 0) = 1 - P(ln(F(4)/x) ≤ 0)  = 1 - P(z ≤ (ln(x(4)/x) - μ) / σ), where z = (ln(F(4)/x) - μ) / σ = (ln(F(4)) - ln(x) - μ) / σ is a standard normal random variable.

Then,P(z ≤ (ln(x(4)/x) - μ) / σ) = P(z ≤ (ln(x) - ln(F(4)) + μ) / σ) = P(z ≤ (ln(x) - ln(x * e^(4μ)) + μ) / σ) = P(z ≤ (ln(1/e^0.192)) / 0.048) = P(z ≤ -1.693) = 0.0456

Therefore, the probability that the price of the share at the end of the four weeks is higher than it is today is 1-  0.0456 = 0.9544 or 95.44%.

To learn about probability here:

https://brainly.com/question/251701

#SPJ11

Determine whether the following statement is TRUE or FALSE. i) Brand of fertilizer is one of quantitative variable. ii) The scale of measurement of variable monthiy electricity bills is ordinal. iii) Sampling frame for nonprobability sampling is not available. iv) The highest hierarchy in scale of measurement for any variable is interval.

Answers

i) True: Brand of fertilizer is a qualitative variable.ii) False: The scale of measurement for variable monthly electricity bills is interval. iii) True: Nonprobability sampling is a type of sampling method where the chances of any element being selected as a part of the sample are not known. iv) False: The highest hierarchy in scale of measurement for any variable is ratio.

i) True: Brand of fertilizer is a qualitative variable. A variable is called quantitative when it is a numerical measurement. A qualitative variable is categorical or descriptive. Brand of fertilizer is descriptive.

ii) False: The scale of measurement for variable monthly electricity bills is interval. A variable is called ordinal when it has some order or ranking associated with it, and there is some variation in quantity between each category. However, this is not true for monthly electricity bills because each unit of measure is equal.

iii) True: Nonprobability sampling is a type of sampling method where the chances of any element being selected as a part of the sample are not known. The sampling frame is the list of elements from which the sample will be drawn, and it is not available in nonprobability sampling.

iv) False: The highest hierarchy in scale of measurement for any variable is ratio. The scales of measurement include nominal, ordinal, interval, and ratio. Ratio measurement has all the features of interval measurement, and also includes an absolute zero point, which represents the complete absence of the attribute being measured.

Know more about fertilizer here,

https://brainly.com/question/14012927

#SPJ11

Other Questions
Let X1 ,X2,X5 be 5 independenh and Identically distibuted random yariablen following a Binomjal distribution with n=10 and unknown = p 10 1.(p(1-p))/500 2.1.(p(1-p))/100 Explain why the focus on improving of information usedfor decision making has one common characteristics of all assuranceservices. Read the following excerpt and answer the questions that follow: As businesses expand internationally, they must not only understand an organization's mission, vision, goals, policies and strategies but also must take into account the legal and ethical issues in international business. When companies plan their long-term expansion into a foreign environment, they must tackle serious moral and ethical challenges and decision-making in order to make their expansion a success. Some of the most common ethical issues in international business include outsourcing, working standards and conditions, workplace diversity and equal opportunity, child labor, trust and integrity, supervisory oversight, human rights, religion, the political arena, the environment, bribery and corruption. Businesses trading internationally are expected to fully comply with federal and state safety regulations, environmental laws, fiscal and monetary reporting statutes and civil rights laws. Cultural considerations can also make or break a company conducting business globally. Every culture and nation has its own history, customs, traditions and code of ethics. Cultural barriers include language, which often means a company must rely on translators when speaking to business contacts and customers. Gender can be an issue in countries where women do not have the same rights as men. Religious holidays and other cultural events can prohibit trade at certain times. Acting in accordance with ethical and cultural values is crucial for a multinational company to win clients' support and business and to achieve a competitive advantage in a particular market. Questions: 1.1. In light of the above, global business organisations face a key challenge: critically discuss whether they should apply their own values everywhere they do business, irrespective of the cultural context and standard of local practices. Provide the relevant responses to the above question. You are analyzing the Photon project, which has the expected cash flows below. The Photon project has a 4 year life (assume "best life") and is competing against another project for funding (the Warp project). That is, the two projects are mutually exclusive. The Warp project has an 8 year life (assume "best life"; cash flows not provided). You notice that the projects have lives of different lengths, so you ask whether the Photon project can be repeated at the end of 4 years. The answer is that it can be. To adjust for the differing lives, you decide to use the NPV replacement chain method. For your initial analysiiz, you are to assume that Photon can be duplicated exactly. Using the replacement chain method and a discount rate of 13.8%, compute Photon's NPV, in a way that would be appropriate to compare to the NPV of the Warp project. Round to nearest penny. Year 0 cash flow =173,000 Year 1 cash flow =71,000 Year 2 cash flow =71,000 Year 3 cash flow =71,000 Year 4 cash flow =71,000 Answer: which of the following hemoglobins migrates to the same position as hgb a2 at ph 8.6? group of answer choices hgb f hgb s hgb h hgb c In 2012, ABC Company reported earnings per share of $6.00 for 10,000 shares. In 2013, there was a 4-for-1 stock split, for which 2013 earnings per share were reported at $3.20. The appropriate earnings per share presentation for a 2-year comparative analysis would be:2013 2012I. $2.10 $2.00II. $0.80 $6.00III. $0.80 $1.50IV. $2.10 $1.00V. $3.10 $1.50 In what way does labeling theory distinguish how gender influences the way we define deviance?We use similar standards to judge the behavior of males and females.We see women in a more powerful role.We see women as less deviant.We use different standards to judge the behavior of males and females. Mabitag Corp. has recorded the following average times for production:Wait| 5 daysMove| 3.5 daysInspection| 1 dayQueue| 2.5 daysProcess| 3 daysWhat is the Manufacturing Cycle Efficiency (MCE)? SHOW SOLUTION After 10 years of monitoring the water quality entering and exiting the wetland, you notice that the wetland no longer is removing phosphorus from the water. Your neighbor suggests hiring a company specializing in wetland construction to harvest the wetland plants and remove the sediment from the wetland. Then the company would line the new constructed wetland with sediments that are known to adsorb P and plant wetland species. Should you trust your neighbor's suggestion? Why or why not? Briefly explain. Which one of the following is an operatind budpet? a cash budget b sales budget. c budgeted balance sheet d capital expenditare budget Which of the following is a common finding of recent cyberbullying studies?A) Adolescents who engage in traditional bullying often also engage in cyberbullying.B) Victims of physical or verbal harassment are usually very different from victims of cyberbullying.C) Cyberbullying has become statistically more common than physical and verbal harassment among the adolescent population.D) More than 80 percent of adolescents have engaged in some form of cyberbullying Marianne and Roger are in good health and have reasonably secure careers. Each earns $54000 annually. They own a home with a $120000 mortgage; they owe $16000 for their car loans, and have $11000 in student loans. If one should die, they think that funeral expenses would be $8000. What is their total insurance needs using the DINK method?(Round your answer to the nearest whole number. Do not include the comma and "$" sign in your response.) (3 points) A Latin square design with 5 treatments and 2blocking variables would have5 cells10 cells20 cells25 cells32 cells 1. Aena is seeking help for her alcohol abuse. She consults a behavior therapist, who might recommend:A aversion therapy.B flooding.C systematic desensitization.D a token economy.2. Cognitive therapies are:A biomedical.B brief.C nondirective.D person-centered.3.Family therapy treats:A the family as an integrated system.B the symptoms of specific disorders.C specific individuals in the family.D the entire family over a long period of time. Napoleon a has a small cut on his foot. His pain receptors would send pain messages to the brain as a result of _________ release.A. Substance PB. Substance P and glutamateC. GlutamateD. Nueromodulators Which gland secretes epinephrine and norepinephrine to help powerthe sympathetic nervous system?A. adrenalB. pinealC. pancreasD. thyroid Which discusses the monetary system. Specifically review section 21-1, which focuses on the meaning of money and offers a discussion on the topic of cryptocurrencies.Additionally, find an article using your subscription to the Wall Street Journal pertaining to cryptocurrency, stable coin, or Central Bank digital currency.In your post, summarize the WSJ article and discuss the following:Which digital currency is being examined in the selected WSJ article? How does it compare to each of the three required functions of money outlined in section 21-1 of the textbook reading?How the use of cryptocurrency could change monetary policy and the management of money supply?Compare the risks and benefits of cryptocurrency.Provide a link to the article and support your answer with relevant ideas, facts, and examples. It has been presented to the Administrator of a chemical plant two Proposals to automate the tablet making processSo:Proposal A is also expected to have an operating cost of $2,800 per year for the first 4 years, thereafter it is assumed that the annual operating cost will increase by $175 per year. The annual cost of "B" will be $1,500 for the first 3 years, after which it is expected that will increase by $220 each year. If the minimum attractive rate of return is 5%, what proposition should be accepted by doing a value analysis Present?Proposal A Proposal BInitial Cost ($) 17,100 29,300Recovery Value ($) 5,639 11,200Useful life (Years) 10 20 snowmobile is originally at the point with position vector 29.7 m at 95.0 counterclockwise from the x axis, moving]with velocity 4.33 m/s at 40.0. It moves with constant acceleration 2.10 m/s2 at 200. After 5.00 s have elapsed, find the following. (a) its velocity vector v m/s (b) its position vector m Need Help? DLA piper, met life, and the other companies featured in thecase are very optimistic about the technology. however, other thanits cost, what are some potential disadvantages of implementingtelepres