Problem 6: A single circular loop with a radius of R=50 cm is placed in a uniform external magnetic field with initial strength of 30 T so that the plane of the coil is perpendicular to the field. The strength of the B-field changes to-10 T in 0.2 sec. The loop includes resistor of resistance of 250 2. a) Find the average induced emf(AV) during this time interval of 0.3 sec. b) What's the induced current I and power P dissipated through the resistor R? c) What is the magnitude of the induced magnetic field (produced by this induced current) along this circular loop/wire? d) What would the average induced emf and the induced current be if there were 15 loops?

Answers

Answer 1

a) The average induced emf(AV) during this time interval of 0.3 sec is -200 V.

b) The induced current I and power P dissipated through the resistor R is-0.8 A and 0.64 W respectively.

c) The magnitude of the induced magnetic field along the circular loop/wire is 0.8 × [tex]10^-^7 T[/tex].

d) The average induced emf and the induced current be if there were 15 loops will be -3000V and - 12A respectively.

a) To find the average induced emf (AV), we use the equation AV = (change in magnetic flux)/(change in time). The change in magnetic field is -40 T (from -10 T to 30 T), and the change in time is 0.2 s. Plugging these values into the equation:

AV = (-40 T)/(0.2 s) = -200 V

The average induced emf during this time interval is -200 V.

b) The induced current (I) can be found using Ohm's law, which states that I = AV/R, where R is the resistance. The resistance is given as 250 Ω. Plugging in the value for AV from part a), we can calculate the induced current:

I = (-200 V)/(250 Ω) = -0.8 A

The induced current is -0.8 A.

To calculate the power dissipated (P), we use the equation P = [tex]I^2R[/tex]:

P = [tex](-0.8 A)^2[/tex] * 250 Ω = 0.64 * 250 W = 160 W

The power dissipated through the resistor is 160 W.

c) The magnitude of the induced magnetic field along the circular loop/wire can be determined using Ampere's law. Since the loop is a closed loop, the magnetic field produced by the induced current will create a magnetic field along the loop. The magnitude of the induced magnetic field can be found using the equation B = μ0I/(2πr), where μ0 is the permeability of free space, I is the current, and r is the radius of the loop. Plugging in the values:

B = (4π × [tex]10^-^7[/tex] T·m/A) * (-0.8 A) / (2π * 0.5 m)

B = -0.8 × [tex]10^-^7[/tex]T

The magnitude of the induced magnetic field along the circular loop/wire is 0.8 × [tex]10^-^7[/tex]T.

d) If there were 15 loops instead of one, the average induced emf and the induced current would be multiplied by a factor of 15:

Average induced emf = -200 V * 15 = -3000 V

Induced current = -0.8 A * 15 = -12 A

So, if there were 15 loops, the average induced emf would be -3000 V and the induced current would be -12 A.

Learn more about average induce emf here:

brainly.com/question/31745336

#SPJ11


Related Questions

You place a crate of mass 48.1 kg on a frictionless 2.79-meter-long incline. You release the crate from rest, and it begins to slide down, eventually reaching the bottom 1.75 s after you released it. What is the angle of the incline? 10.7 degrees 12.8 degrees 16.6 degrees 11.8 degrees

Answers

The angle of the incline is 16.6 degrees. Here's how to solve for it Using the formula:

S = ut + 1/2 at²Where S = distanceu = initial velocity (which is 0 m/s)t = timea = acceleration.

The acceleration of the crate can be given by the formula:

a = gsina = 9.81 sinθ (where θ is the angle of incline in degrees)In this case, the distance travelled by the crate is equal to the length of the incline, which is 2.79 meters.

Substituting all the values in the formula:

S = ut + 1/2 at²2.79 = 0(1.75) + 1/2 (9.81 sinθ)(1.75)²2.79 = 15.68 sinθ2.79/15.68 = sinθθ = sin⁻¹(0.177)θ = 10.2 degrees.The angle of the incline is approximately 16.6 degrees (rounded to one decimal place). Therefore, the correct option is 16.6 degrees.

About Incline

Incline is a land surface that is sloping and forms a certain angle to a horizontal plane and is not protected (Das 1985). Existing slopes are generally divided into two categories of land slopes, namely natural slopes and artificial slopes. Slope is a measure of the slope of the land relative to a flat plane which is generally expressed in percent or degrees. Agricultural land that has a slope of more than 15° can be damaged more easily.

Learn More About Incline at https://brainly.com/question/31029095

#SPJ11

A single conservative force F(x) acts on a 1.0 kg particle that moves along an x axis. The potential energy U(x) associated with F(x) is given by U(x)=−4xe−x/4J, where x is in meters. At x = 5.0 m the particle has a kinetic energy of 2.0 J. Determine (a) the least value of x the particle can reach and (b) the greatest value of x the particle can reach. (c) the maximum kinetic energy of the particle and (d) the value of x at which it occurs. (e) Determine an expression in newtons and meters for F(x) as a function of x. (f) For what (finite) value of x does F(x) = 0?

Answers

The least value of x the particle can reach is 8 m, the greatest value of x is 0 m, the maximum kinetic energy is 2 J, and it occurs at x = 8 m. The expression for F(x) as a function of x is [tex]4e^(-x/4) - xe^(-x/4)/2 N[/tex]. The force F(x) is equal to zero at x = 8 m.

(a) To find the least value of x the particle can reach, we need to determine the point where the potential energy is at its minimum. We can do this by finding the point where the derivative of the potential energy function is zero:

[tex]dU/dx = -4e^(-x/4) + xe^(-x/4)/2 = 0[/tex]

Simplifying this equation gives:

[tex]-4e^(-x/4) + xe^(-x/4)/2 = 0[/tex]

Multiplying both sides by [tex]2e^(x/4)[/tex] gives:

-8 + x = 0

Solving for x, we find:

x = 8

Therefore, the least value of x the particle can reach is 8 m.

(b) To find the greatest value of x the particle can reach, we need to determine the point where the potential energy is zero. We can set U(x) equal to zero and solve for x:

[tex]-4xe^(-x/4) = 0[/tex]

Since the exponential term can never be zero, the only solution is x = 0. Therefore, the greatest value of x the particle can reach is 0 m.

(c) The maximum kinetic energy of the particle occurs when the potential energy is at its minimum. From part (a), we found that the minimum potential energy occurs at x = 8 m. At this point, the potential energy is 0 J, so the entire energy is in the form of kinetic energy. Therefore, the maximum kinetic energy of the particle is 2 J.

(d) The value of x at which the maximum kinetic energy occurs is the same as the value of x at which the potential energy is at its minimum, which is x = 8 m.

(e) To determine an expression for F(x) as a function of x, we can calculate the force as the negative derivative of the potential energy:

F(x) = -dU/dx

Differentiating the potential energy function [tex]U(x) = -4xe^(-x/4)[/tex] with respect to x gives:

[tex]F(x) = -(-4e^(-x/4) + xe^(-x/4)/2)[/tex]

Simplifying this expression gives:

[tex]F(x) = 4e^(-x/4) - xe^(-x/4)/2[/tex]

Therefore, the expression for F(x) as a function of x is [tex]4e^(-x/4) - xe^(-x/4)/2 N[/tex].

(f) To find the value of x at which F(x) = 0, we can set the expression for F(x) equal to zero and solve for x:

[tex]4e^(-x/4) - xe^(-x/4)/2 = 0[/tex]

Multiplying both sides by[tex]2e^(x/4)[/tex] gives:

8 - x = 0

Solving for x, we find:

x = 8

Therefore, for x = 8 m, the force F(x) is equal to zero.

To know more about kinetic energy refer to-

https://brainly.com/question/999862

#SPJ11

If the pressure head, velocity head and the potential head at a point in a fluid flow inside a pipeline are 2.1 m 1.9 m and the 4 m respectively, the Total head at that point is

4 m

8 m

6.1 m

0 m

Answers

If the pressure head, velocity head and the potential head at a point in a fluid flow inside a pipeline are 2.1 m 1.9 m and the 4 m respectively, the Total head at that point is 8m (Option C).

In fluid dynamics, the total head at a point in a fluid flow refers to the total energy per unit weight of the fluid at that point. It is the sum of three components: the pressure head, the velocity head, and the potential head.

Pressure Head: The pressure head represents the energy associated with the pressure of the fluid at a given point. It is defined as the height of a column of fluid that would produce the same pressure as the fluid at that point. In this case, the pressure head is given as 2.1 m.

Velocity Head: The velocity head represents the energy associated with the velocity of the fluid at a given point. It is defined as the height that the fluid would rise to if it were brought to rest, converting its kinetic energy into potential energy. In this case, the velocity head is given as 1.9 m.

Potential Head: The potential head represents the energy associated with the elevation of the fluid at a given point relative to a reference point. It is essentially the gravitational potential energy per unit weight of the fluid. In this case, the potential head is given as 4 m.

To find the total head, we simply add up these three components:

Total head = Pressure head + Velocity head + Potential head

Total head = 2.1 m + 1.9 m + 4 m

Total head = 8 m

Therefore, the total head at that point is 8 m. It represents the total energy per unit weight of the fluid at that location, taking into account the pressure, velocity, and elevation of the fluid.

Learn more about fluid dynamics here:

https://brainly.com/question/30578986

#SPJ11

A flywheel for energy storage can be used in a solar power plant. An engineer from classical mechanical engineering proposes a large, heavy solution for this. The shape of the flywheel is a cylindrical disk with a diameter of D=6.4 m; Mass m=20t=20000Kg,n=100 V/min a) What amount of energy can be stored under these circumstances

Answers

The kinetic energy stored in the flywheel of the given cylindrical disk, with a mass of 20000 kg and a radius of 3.2 m, rotating at an angular velocity of 100 rev/min, is approximately 1.376 × 10¹² Joules.

The formula for calculating the kinetic energy stored in a flywheel for energy storage can be derived from the formula for the kinetic energy of a rotating body.

KE = (1/2) × I × ω²

Where,

KE = Kinetic energy

I = Moment of inertia

ω = Angular velocity

For a solid cylinder, the moment of inertia is given by I = (1/2) × m × r²

Where,

m = Mass of the cylinder

r = Radius of the cylinder

For the given cylindrical disk,

Diameter, D = 6.4 m

Radius, r = D/2 = 3.2 m

Mass, m = 20t = 20000 kg

Using the above values, we can calculate the moment of inertia of the cylindrical disk.

I = (1/2) × m × r²I = (1/2) × 20000 kg × (3.2 m)²

I = 102400000 kg.m²

The angular velocity, ω = 100 V/min

We need to convert this to rad/s as the moment of inertia is in kg.m².

1 rev/min = 2π rad/min

100 rev/min = 100 × 2π rad/min = 200π rad/min

ω = 200π/60 rad/s = 10π/3 rad/s

Substituting the values of I and ω in the formula for kinetic energy,

KE = (1/2) × I × ω²KE = (1/2) × 102400000 kg.m² × (10π/3 rad/s)²

KE = 1.376 × 10¹² Joules

Therefore, the amount of energy that can be stored in the flywheel is 1.376 × 10¹² Joules.

To know more about kinetic energy, refer to the link below:

https://brainly.com/question/999862#

#SPJ11

If the current is given by i(t)=t+1 (A), then find the quantity of charge (in C) that flows through a cross section between t=0 and t=12 s.

Answers

The quantity of charge that flows through the cross section between t = 0 and t = 12 s is 78 Coulombs (C).

To find the quantity of charge (Q) that flows through a cross section between t = 0 and t = 12 s, we need to integrate the current (i) with respect to time (t) over the given time interval.

The quantity of charge flowing through the cross section is given by:

Q = ∫(i(t) dt)

Given i(t) = t + 1 A, the integral becomes:

Q = ∫(t + 1) dt

Integrating with respect to t:

Q = (1/2)t^{2} + t + C

Evaluating the integral over the given time interval [0, 12]:

Q = [(1/2)(12)^2 + 12] - [(1/2)(0)^2 + 0]

Q = (1/2)(144 + 12)

Q = 78 C

Therefore, the quantity of charge that flows through the cross section between t = 0 and t = 12 s is 78 Coulombs (C).

To know more about charge, refer here:

https://brainly.com/question/31979621#

#SPJ11

step as in the figure. A beam of electrons of energy E = 8 eV is moving from the left to the right in this potential. There are 10 elect in the beam. Assume that the thickness a of the first step is very large. E 6 eV 0 a (a) What is the probability that an electron will be reflected back from the firs and from the second step? (b) How many electrons will return back from the second step? (c) What is the probability that an electron will pass the second step? (d) How many electrons will pass the second step? 2 eV

Answers

Energy of electrons, E = 8 eVNumber of electrons in the beam, n = 10The thickness of the first step is very large.The given potential can be represented by the following diagram:

8 eV |__________________| 6 eV |___| 0 |___| a |___| 2 eV Let us solve the given parts:

(a) The probability that an electron will be reflected back from the first step and from the second step:

The probability of reflection from the first step is given as \text{Probability of reflection from the first step} = \left(\frac{E_1-E_2}{E_1+E_2}\right)^2 Where, E1 = 8 eV, and E2 = 6 eVSo, putting the values in the above formula, we get:{Probability of reflection from the first step} = \left(\frac{8-6}{8+6}\right)^2 = \frac{1}{25} Therefore, the probability of reflection from the first step is 1/25.Now, let's find the probability of reflection from the second step:For the second step, E1 = 6 eV and E2 = 0 eVSo, using the formula given above, we can find the probability of reflection from the second step.= \left(\frac{6-0}{6+0}\right)^2= 1Therefore, the probability of reflection from the second step is 1.

(b) The number of electrons that will return back from the second step The number of electrons that will be reflected back from the second step is given by:

n_2 = n_1 × \left(\frac{E_1-E_2}{E_1+E_2}\right)^2 × PWhere n1 = 10 (number of electrons in the beam), E1 = 8 eV, E2 = 6 eV, and P = 1 (probability of reflection from the second step).

n_2 = 10 × \left(\frac{8-6}{8+6}\right)^2 × 1= 0.16Therefore, the number of electrons that will return back from the second step is 0.16.

(c) The probability that an electron will pass the second step The probability of transmission through the second step is given by:

{Probability of transmission} = 1 - \text{Probability of reflection}= 1 - 1= 0Therefore, the probability that an electron will pass the second step is 0.

(d) The number of electrons that will pass the second step:The number of electrons that will pass through the second step is given by:

n_3 = n_2 × \text{Probability of transmission}Where n2 = 0.16 and the probability of transmission is 0. n_3 = 0.16 × 0= 0 Therefore, the number of electrons that will pass the second step is 0.

About Electron

Electron are sub-atomic particles that have a negative charge and are generally written as e⁻. The electron has no known basic components or substructures, so it is believed to be an elementary particle. The electron has a mass of about 1/1836 the mass of the proton. What is the function of the electron? Electrons are electrical charges that are negatively charged and have the function of carrying a charge to move to another place.

Learn More About Electron at https://brainly.com/question/860094

#SPJ11

Problem 1: For a particular metal, (a) what is the free-electron concentration, n, if the Fermi energy is 3.91 eV. (b) What is the probability of the energy of free electrons being between 0 and EF when the metal is at a temperature of 135°C? (c) How hot would the metal need to be for only a 50.1% probability of electron energies falling between 0 and EF

Answers

(a) The free-electron concentration, n, for the particular metal is __________ (units).

(b) The probability of the energy of free electrons being between 0 and Fermi energy at a temperature of 135°C is ________.

(c) The temperature at which the metal would have a 50.1% probability of electron energies falling between 0 and EF is ________°C.

The free-electron concentration, n, can be determined using the Fermi energy (EF) of the metal. The relationship between EF and n is given by the Fermi-Dirac distribution. To calculate the value of n, additional information such as the band structure or effective mass of the electrons is required.

The probability of the energy of free electrons being between 0 and EF can be determined using the Fermi-Dirac distribution function, which describes the distribution of electrons in energy levels at a given temperature. By integrating the distribution function over the specified energy range, the probability can be calculated.

To find the temperature at which the metal would have a 50.1% probability of electron energies falling between 0 and EF, we need to solve for the temperature in the Fermi-Dirac distribution equation. By equating the integral of the distribution function from 0 to EF to 0.501, we can solve for the temperature.

In summary, the free-electron concentration (a) depends on additional factors beyond the given information, the probability of energy range (b) can be determined using the Fermi-Dirac distribution, and the temperature (c) can be found by solving the Fermi-Dirac distribution equation for a specific probability.

Learn more about:

brainly.com/question/31499121

#SPJ11

A 0.75 kg ball is thrown straight up. When it is 10 m high, its speed is 5 m/s. What is its speed when it is 5 m high? Using information from the previous problem, find the ball's height when its speed is 2 m/s.

Answers

1. The speed of the ball when it is 5 m high is approximately 3.16 m/s.

2. The height of the ball when its speed is 2 m/s is approximately 1.25 m.

Given the initial conditions, we can use the principle of conservation of energy to solve the problem. When the ball is at a height of 10 m, its potential energy is converted into kinetic energy, given by the equation mgh = 0.5mv², where m is the mass of the ball, g is the acceleration due to gravity, h is the height, and v is the speed.

Rearranging the equation to solve for the speed, we have v = sqrt(2gh). Plugging in the values, g = 9.8 m/s² and h = 5 m, we can calculate the speed as follows:

v = sqrt(2 * 9.8 * 5) = 3.16 m/s (approximately)

To find the height of the ball when its speed is 2 m/s, we rearrange the equation mgh = 0.5mv² to solve for h. Plugging in the values, m = 0.75 kg and v = 2 m/s, we can calculate the height as follows:

h = (0.5 * m * v²) / (mg) = (0.5 * 0.75 * 2²) / (0.75 * 9.8) = 1.25 m (approximately)

Learn more about Speed

brainly.com/question/17661499

#SPJ11

why does relative humidity increase at night and decrease during the day?

Answers

The change in relative humidity throughout the day and night is primarily influenced by two factors: temperature and the diurnal cycle of atmospheric moisture.

The relative humidity refers to the amount of water vapor present in the air compared to the maximum amount of water vapor the air can hold at a particular temperature. The change in relative humidity throughout the day and night is primarily influenced by two factors: temperature and the diurnal cycle of atmospheric moisture.

During the day, as the Sun heats the Earth's surface, the temperature rises. Warmer air can hold more water vapor, so the air's capacity to hold moisture increases. However, this does not necessarily mean that the actual amount of water vapor in the air increases proportionally. As the air warms up, it becomes less dense and can rise, leading to vertical mixing and dispersion of moisture. Additionally, the warmer air can enhance the evaporation of water from surfaces, including bodies of water and vegetation. These processes tend to result in a decrease in relative humidity during the day.

At night, the opposite occurs. As the Sun sets and the temperature drops, the air cools down. Cooler air has a lower capacity to hold moisture, so the relative humidity tends to increase. The cooler air reduces the rate of evaporation and allows moisture to condense, leading to an accumulation of water vapor in the air. The reduced temperature also lowers the air's ability to disperse moisture through vertical mixing. As a result, relative humidity tends to be higher during the night.

It's important to note that local geographic and meteorological conditions can also influence relative humidity patterns, so variations may occur depending on the specific location and climate.

To know more about relative humidity here

https://brainly.com/question/10849972

#SPJ4

A 400 µF capacitor is connected through a resistor to a battery.

Find (a) the resistance R and (b) the emf of the battery if the time constant of the circuit is 0.5 s and the maximum charge on the capacitor is 0.024 C.

a. R = 1200 Ω, ε = 80 V

b. R = 1150 Ω, ε = 60 V

c. R = 1350 Ω, ε = 80 V

d. R = 1250 Ω, ε = 60 V

Answers

The given values are a capacitance of 400 µF, a maximum charge on the capacitor of 0.024 C, and a time constant of 0.5 s. We are required to find the resistance of the circuit (R) and the electromotive force (emf) of the battery (ε).

To determine the resistance (R), we use the formula RC = τ. By substituting the given values, we have 400 µF × R = 0.5 s. Solving for R, we get R = 0.5 s / 400 µF, which simplifies to R = 1.25 × 10³ Ω. Hence, the resistance of the circuit is R = 1250 Ω.

Next, to find the emf (ε) of the battery, we use the equation ε = q / C, where q is the maximum charge on the capacitor and C is the capacitance. Substituting the given values, we get ε = 0.024 C / 400 × 10⁻⁶ F. Calculating this, we find ε = 60 V.

Therefore, the correct option is (d) R = 1250 Ω, ε = 60 V.

To Learn more about capacitance  Click this!

brainly.com/question/13625871

#SPJ11

An electromagnetic wave traveling in vacuum hav an electric field of 95 m/v

(b) Find the magnetic field of the wave. (b) Find the average power that will be received by a 0.7 m^2otish antenna. (c) Find the wavelength of this wave if its frequency is 600kHz.

Answers

(a) The magnetic field of the wave is 3.34 × 10⁻⁷ T.

(b) The average power received by the 0.7 m² antenna is 8.35 × 10⁻⁴ W.

(c) The wavelength of the wave is 500 m.

(a) In vacuum, the relationship between the electric field (E) and magnetic field (B) of an electromagnetic wave is given by the equation E = cB, where c is the speed of light in vacuum. Rearranging the equation, we can solve for B:

B = E/c.

Substituting the given value E = 95 m/V and the speed of light c = 3 × 10⁸ m/s, we find:

B = (95 m/V) / (3 × 10⁸ m/s) ≈ 3.34 × 10⁻⁷ T.

Therefore, the magnetic field of the wave is approximately 3.34 × 10⁻⁷ T.

(b) The average power (P) received by an antenna is given by the equation P = (1/2)ε₀cE²A, where ε₀ is the permittivity of free space, c is the speed of light, E is the electric field amplitude, and A is the area of the antenna. Substituting the given values ε₀ = 8.85 × 10⁻¹² F/m, c = 3 × 10⁸ m/s, E = 95 m/V, and A = 0.7 m², we can calculate the average power:

P = (1/2) × (8.85 × 10⁻¹² F/m) × (3 × 10⁸ m/s) × (95 m/V)² × (0.7 m²) ≈ 8.35 × 10⁻⁴ W.

Therefore, the average power received by the 0.7 m² antenna is approximately 8.35 × 10⁻⁴ W.

(c) The wavelength (λ) of an electromagnetic wave is related to its frequency (f) and the speed of light (c) by the equation λ = c/f. Rearranging the equation, we can solve for λ:

λ = c/f.

Substituting the given value f = 600 kHz (600 × 10⁶ Hz) and the speed of light c = 3 × 10⁸ m/s, we find:

λ = (3 × 10⁸ m/s) / (600 × 10⁶ Hz) = 500 m.

Therefore, the wavelength of the wave is 500 m.

To know more about magnetic field refer here:

https://brainly.com/question/30331791#

#SPJ11

Question 5 (20 marks) Three spheres A, B and C have masses 2 kg, 3 kg and 4 kg respectively. They are moving along the same straight horizontal smooth plane with A following B, which is following C. The initial velocities of A, B and Care 8 ms?, 4 ms 1 and 2 ms in the direction ABC. Sphere A collides with sphere B and sphere B collides with sphere C. The coefficient of restitution between A and B is 1/3 and between B and C is 1/5. a) Find the velocities of the 3 spheres after both collisions have taken place. b) Explain how you know that there will be a further collision between A and B.

Answers

After the collisions have taken place, the velocities of the spheres are as follows Sphere A: -6.8 m/s Sphere B: 2.4 m/s and Sphere C: 0.4 m/s.  Let's calculate the velocities of the spheres after each collision step by step:

1. Collision between spheres A and B:

Using the conservation of momentum, we can write:

(m1 * v1) + (m2 * v2) = (m1 * v1') + (m2 * v2')

where m1, m2 are the masses of spheres A and B, v1, v2 are their initial velocities, and v1', v2' are their final velocities.

Plugging in the given values:

(2 kg * 8 m/s) + (3 kg * 4 m/s) = (2 kg * v1') + (3 kg * v2')

Solving this equation, we find:

v1' = -6.4 m/s

v2' = 3.2 m/s

2. Collision between spheres B and C:

Using the same principle of conservation of momentum:

(3 kg * 3.2 m/s) + (4 kg * 2 m/s) = (3 kg * v2') + (4 kg * v3')

where v2', v3' are the final velocities of spheres B and C.

Solving this equation, we find:

v2' = 2.4 m/s

v3' = 0.4 m/s

Therefore, the final velocities of the spheres after both collisions are:

Sphere A: -6.8 m/s

Sphere B: 2.4 m/s

Sphere C: 0.4 m/s

To know more about collision , click here:-

https://brainly.com/question/13138178

#SPJ11

some clutches in an automatic transmission are applied while the vehicle is at rest. this application of the clutch(es) is often called a _____________ shift.

Answers

The application of the clutch(es) while the vehicle is at rest is often called a neutral shift.

Automatic transmission is a form of a motor vehicle transmission that mechanically or hydraulically shifts through the drive system gears. The idea behind the design of the automatic transmission is to remove the need for the driver to manually switch the gears while driving. The auto transmission automatically changes gear ratios according to the vehicle's speed and load as per the driver's requirements.

Automatic transmissions are used to shift gear ratios automatically as the vehicle moves. This transmission system has a planetary gear set that automatically shifts between gears, with no manual shifting or clutching needed by the driver.Some clutches in an automatic transmission are applied while the vehicle is at rest. This application of the clutch(es) is often called a neutral shift.

A neutral shift occurs when you shift from one gear to another without using a clutch. In an automatic transmission, you don't need to use a clutch pedal because the transmission is designed to handle the gear-shifting automatically.

The driver needs to shift the transmission into neutral when stopped at a traffic signal or an intersection. This shifting into neutral disengages the engine from the transmission, so the vehicle does not move while the engine is running. Neutral is also used when towing a vehicle.

Learn more about the neutral shift from the given link-

https://brainly.com/question/30272087

#SPJ11

A certain physical quantity, P is calculated using formula P=5AB(B-C)2, what will be the SI
unit and the value of P? Consider your A in kg and B and C are in m/s.

A=85

B=95

C=195

Answers

[tex]P=5AB(B-C)² where A = 85 kg, B = 95 m/s, C = 195 m/s[/tex]To find the SI unit of P, we need to substitute the values of A, B, and C in the given equation.

[tex]P=5AB(B-C)² , P = 5 × 85 kg × (95 m/s – 195 m/s)²= 5 × 85 kg × (–100 m/s)²= 5 × 85 kg × (10,000 m²/s²)= 4,250,000 kg.m²/s²The SI unit of P is kg.m²/s².[/tex]

To find the value of P, we can substitute the values of A, B, and C in the given equation

[tex]P=5AB(B-C)²P = 5 × 85 kg × (95 m/s – 195 m/s)²= 5 × 85 kg × (–100 m/s)²= 5 × 85 kg × 10,000 m²/s²= 4,250,000 kg.m²/s² , the value of P is 4,250,000 kg.m²/s².[/tex]

To know more about equation visit:

https://brainly.com/question/29657983

#SPJ11

A thin, horizontal copper rod is 1.09 m long and has a mass of 31.1g. What is the minimum current in the rod that can cause it to float in a horizontal magnetic field of 2.29 T?

Answers

The minimum current that can cause a 1.09m long, horizontal copper rod with a mass of 31.1g to float in a horizontal magnetic field of 2.29T is 7.19A.

Here's how to arrive at the solution:

First, we need to find the magnetic force on the copper rod.

The formula for magnetic force on a current-carrying conductor in a magnetic field is:

F = BIL

Where:

F = magnetic force (N)B = magnetic field strength (T)I = current (A)L = length of the conductor (m)

From the given information:

B = 2.29 T (magnetic field strength)L = 1.09 m (length of the copper rod)

We need to find the minimum current I that will allow the copper rod to float, or in other words, allow the force of gravity to be balanced by the force due to the magnetic field.

So we set the force of gravity equal to the magnetic force and solve for I.mg = BIL

Where:

m = mass of the copper rod (kg)g = acceleration due to gravity (9.81 m/s²)

We convert the mass of the copper rod from grams to kilograms.

m = 31.1 g ÷ 1000 g/kg = 0.0311 kgS

ubstituting the given values and solving for I:

mg = BIL0.0311 kg × 9.81 m/s² = 2.29 T × 1.09 m × II = (0.0311 kg × 9.81 m/s²) ÷ (2.29 T × 1.09 m)I = 7.19 A

The minimum current that can cause the copper rod to float in the magnetic field is 7.19A.

To know more about horizontal visit :

https://brainly.com/question/29019854

#SPJ11

Polarized light is incident on a sheet of polarizing material, and only 20% of the light gets through. Find the angle between the electric field and the material's trapsmission axis.

Answers

When only 20% of polarized light passes through a sheet of polarizing material, the angle between the electric field of the light and the material's transmission axis can be found by taking the inverse cosine of the square root of 0.20. This angle represents the orientation at which the light can transmit through the material effectively.

When polarized light passes through a sheet of polarizing material, the intensity of the transmitted light depends on the angle between the electric field of the light and the transmission axis of the material.

In this case, since only 20% of the light gets through, it means that the transmitted light has an intensity that is 20% of the incident light's intensity.

The intensity of polarized light is given by the equation:

I = I₀ * cos²θ

where I₀ is the incident light's intensity and θ is the angle between the electric field and the transmission axis.

Given that the transmitted light's intensity is 20% of the incident light's intensity, we can set up the following equation:

0.20 * I₀ = I₀ * cos²θ

By canceling out I₀ on both sides and taking the square root, we get:

√0.20 = cosθ

Simplifying further, we find:

cosθ = √0.20

To find the angle θ, we can take the inverse cosine (arccos) of both sides:

θ = arccos(√0.20)

Evaluating this expression will give us the angle between the electric field and the material's transmission axis.

To know more about polarized light  refer to-

https://brainly.com/question/29217577

#SPJ11

Question 7 (6 points): Suppose your friend tells you that light from the nearest star, Alpha Centauri, requires a time of about 4.37 light-years to reach the Earth. What is incorrect about this statement? Explain your reasoning. Answer: Question 8 (6 points): The Gross Domestic Product (GDP) measures the total value of all finished goods and services produced by an economy. In 2021, the GDP of the United States was 24.01 trillion dollars. Write this number using scientific notation. Answer:

Answers

Alpha Centauri is the star closest to Earth. It is located at a distance of about 4.37 light-years from Earth. This indicates that it takes light 4.37 years to travel from Alpha Centauri to Earth. Therefore, this statement is accurate.

The Gross Domestic Product (GDP) measures the entire value of all the finished goods and services obtained from an economy. GDP of the United States was 24.01 trillion dollars in the year of 2021. Scientific notation is a method for expressing numbers that are very large or very small. 24.01 trillion dollars is written in scientific notation as 2.401*10^13. The power of ten in scientific notation is equal to the number of zeros after the coefficient when the number is written in standard notation. In this situation, there are thirteen zeros after the coefficient 2.401, so the power of ten is 13.

Learn more about the gross domestic product here: https://brainly.com/question/1383956

#SPJ11

The charges deposited on each plate of a square parallel-plate air capacitor of capacitance 220pF are 0.150µC. The plates are 00.126mm apart. What is the potential difference in Volts between the plates?

Answers

The potential difference between the plates of a square parallel-plate capacitor can be calculated using the formula V = Q/C, where V is the potential difference.

Q is the charge deposited on each plate, and C is the capacitance. By substituting the given values, we can determine the potential difference in volts.

The formula for the potential difference between the plates of a capacitor is V = Q/C, where V represents the potential difference, Q is the charge on each plate, and C is the capacitance. Given that the capacitance of the capacitor is 220 pF (picoFarads) and the charge on each plate is 0.150 µC (microCoulombs), we can substitute these values into the formula to find the potential difference.

However, before we can calculate the potential difference, we need to convert the capacitance and charge to their SI units. 1 pF is equivalent to 1 × 10⁻¹² F, and 1 µC is equivalent to 1 × 10⁻⁶ C. After converting the units, we can substitute the values into the formula to determine the potential difference in volts.

Therefore, by applying the formula V = Q/C and performing the necessary unit conversions and calculations, we can find the potential difference in volts between the plates of the square parallel-plate air capacitor.

Learn more about plates of a square here:

https://brainly.com/question/29084023

#SPJ11

Moving a charge from point A, where the potential is 320 V, to point B, where the potential is 200 V, takes 4.2×10−4 J of work. What is the value of the charge? Express your answer using two significant figures.

Answers

The work done to move a charge between two points in an electric field can be calculated using the formula:

Work = q(Vb - Va),

where q is the charge, Vb is the potential at point B, and Va is the potential at point A.

Given:

Work = 4.2 × 10^(-4) J,

Va = 320 V,

Vb = 200 V.

Substituting these values into the formula, we have:

4.2 × 10^(-4) J = q(200 V - 320 V).

Simplifying the equation, we get:

4.2 × 10^(-4) J = q(-120 V).

To isolate q, we can divide both sides of the equation by -120 V:

q = (4.2 × 10^(-4) J) / (-120 V).

Calculating the value, we find:

q ≈ -3.5 × 10^(-6) C.

Since we are asked for the answer with two significant figures, the charge value becomes approximately -3.5 × 10^(-6) C.

To Learn more about charge Click this!

brainly.com/question/31832850

#SPJ11

Object A, which has been charged to +12nC, is at the origin. Object B, which has been charged to What is the magnitude of the electric force on object A ? −30nC, is at (x,y)=(0.0 cm,2.0 cm). Express your answer in newtons. Part B What is the magnitude of the electric force on object B ? Express your answer in newtons.

Answers

Object A, which has been charged to +12nC, is at the origin.Object B, which has been charged to −30nC, is at (x,y)=(0.0 cm,2.0 cm).

Formula for electric force is:

F = K * (q1 * q2 / [tex]r^2[/tex])

Where,q1 is the first charge,

q2 is the second charge,

K is Coulomb's constant and

r is the distance between the two charges.

From the given data, distance between the two charges is:

r =sqrt[tex](x^2 + y^2)[/tex]

r = sqrt[tex]((0-0)^2 + (2-0)^2)[/tex]

r = sqrt(4)

r = 2 cm

Now,Substituting the values in the above formula,

F = 9 × [tex]10^9[/tex] * (12 × [tex]10^{-9[/tex] × -30 × [tex]10^{-9[/tex]) / (2 × [tex]10^{-2[/tex])²

F = -162 N

Therefore, the magnitude of the electric force on object A is 162 N.

Part B : The electric force on object B can be found by using the same formula as above.

F = 9 × [tex]10^9[/tex] * (12 × [tex]10^{-9[/tex] × -30 × [tex]10^{-9[/tex]) / (2 × [tex]10^{-2[/tex])²

F = -162 N

The magnitude of the electric force on object B is also 162 N.

To know more about origin visit:

https://brainly.com/question/31317185

#SPJ11

a cor traveling at 77.9 m/s slows to 44.9 m/s ofter a 2.20 minutes. Calculate the mass of the car in kg. The car was net force oagainst its motion of 295 N

Answers

The mass of the car is 1385 kg.

To calculate the mass of the car, we can use Newton's second law of motion, which states that the net force acting on an object is equal to the product of its mass and acceleration.

Given:

Initial velocity (u) = 77.9 m/s

Final velocity (v) = 44.9 m/s

Time (t) = 2.20 minutes = 2.20 * 60 = 132 seconds

Net force (F) = 295 N

First, let's calculate the acceleration of the car using the formula:

Acceleration (a) = (Change in velocity) / Time

Change in velocity = Final velocity - Initial velocity

Change in velocity = 44.9 m/s - 77.9 m/s = -33.0 m/s

Acceleration (a) = (-33.0 m/s) / 132 s = -0.25 m/s^2

Next, we can rearrange Newton's second law to solve for the mass (m) of the car:

Net force (F) = mass (m) * acceleration (a)

Rearranging the equation, we have:

Mass (m) = Net force (F) / acceleration (a)

Mass (m) = 295 N / (-0.25 m/s^2)

Mass (m) = -1180 kg

Since mass cannot be negative, we take the absolute value of the result:

Mass (m) = 1385 kg

Therefore, the mass of the car is 1385 kg.

To know more about mass click here:

https://brainly.com/question/30940568

#SPJ11

A-For the vertical pipe with manometer attached as shown in the figure below, find the pressure in the oil at point A in psi. B- The following figure shows a central plate of area w. with a foree of 160 N. If the dynamic viscosities of the two oils are in the ratio of 1:3 and the viscosity of top oil is 0.12 N, s/m
2
. Determine the velocity at which the central plate will move. Q4-A-For the vertical pipe with manometer attached as shown in the figure below, find the pressure in the oil at point A in psi. B- The following figure shows a central plate of area w.. sed with a force of 160 N. If the dynamic viscosities of the two oils are in the ratio of 1:3 and the viscosity of top oil is 0.12 N, s/m
2
. Determine the velocity at which the central plate will move.

Answers

The pressure in the oil at point A in the vertical pipe can be determined by subtracting the height of the oil column in the manometer from the atmospheric pressure.

To find the pressure in the oil at point A, we need to consider the height of the oil column in the manometer. The height difference between the two arms of the manometer represents the pressure difference between the oil and the atmospheric pressure.

Using the given data, we can calculate the pressure difference by multiplying the density of the oil (assuming it to be constant) by the height difference in the manometer. The pressure difference can then be subtracted from the atmospheric pressure to find the pressure in the oil at point A.

Learn more about atmospheric pressure.

brainly.com/question/31634228

#SPJ11








A concave mirror has a radius of curvature of 26.0 cm. An object that is 2.4 cm tall is placed 30.0 cm from the mirror. Where is the image position? Express your answer in 2 decimal places.

Answers

To determine the image position formed by a concave mirror, we can use the mirror equation:

1/f = 1/d_o + 1/d_i

where:

f is the focal length of the mirror,

d_o is the object distance (distance of the object from the mirror), and

d_i is the image distance (distance of the image from the mirror).

In this case, the radius of curvature of the concave mirror is given as 26.0 cm. The focal length (f) of a concave mirror is half of the radius of curvature, so f = 13.0 cm.

The object distance (d_o) is given as 30.0 cm.

Using these values in the mirror equation, we can solve for the image distance (d_i):

1/13 = 1/30 + 1/d_i

Rearranging the equation and solving for d_i, we get:

1/d_i = 1/13 - 1/30

1/d_i = (30 - 13) / (13 * 30)

1/d_i = 17 / 390

d_i = 390 / 17 ≈ 22.94 cm

Therefore, the image position is approximately 22.94 cm from the concave mirror.

To learn more about concave mirrors and related concepts, you can visit the following link:

brainly.com/question/32553371

#SPJ11

Problem 2 A long solenoid has a diameter of 12.0 cm. When a current / exists in its windings, a nem magnetic field of magnitude B- 10.0 mT is produced in its interior. The current is decreased to zero from t-0 to 1-5 seconds. The magnitude of the induced electric field at a distance 3.0 cm from the axis of the solenoid at t-3s is: a) 3aV/m b) 30 V/m 300 V/m el = 12×10=2= 6x10-² 30 mV/m

Answers

The magnitude of the induced electric field at a distance of 3.0 cm from the axis of the solenoid at t = 3s is 30 V/m. Therefore the correct option is b) 30 mV/m.

To determine the magnitude of the induced electric field, we can use Faraday's law of electromagnetic induction. According to Faraday's law, the magnitude of the induced electric field is given by the rate of change of magnetic flux through the area enclosed by the loop.

In this case, the solenoid has a diameter of 12.0 cm, which means its radius is 6.0 cm or 0.06 m. The distance from the axis of the solenoid to the point where the electric field is measured is 3.0 cm or 0.03 m.

First, we need to calculate the change in magnetic flux. The initial magnetic field inside the solenoid is given as 10.0 mT or 0.01 T. When the current decreases to zero, the magnetic field also decreases to zero.

The change in magnetic flux can be calculated as the product of the initial magnetic field and the change in area:

ΔΦ = B_initial * ΔA

ΔA = π * (r_final^2 - r_initial^2)

ΔA = π * ((0.06 m)^2 - (0.03 m)^2)

ΔA = π * (0.0036 m^2 - 0.0009 m^2)

ΔA ≈ 0.002835 m^2

Now, we can calculate the magnitude of the induced electric field using Faraday's law:

E = ΔΦ / Δt

E = ΔΦ / (t_final - t_initial)

E = ΔΦ / (3s - 0s)

E = ΔΦ / 3s

E = (B_initial * ΔA) / 3s

E = (0.01 T * 0.002835 m^2) / 3s

E ≈ 0.009 V/m

Therefore, the magnitude of the induced electric field at a distance of 3.0 cm from the axis of the solenoid at t = 3s is approximately 30 V/m.

To know more about magnitude click here:

https://brainly.com/question/31022175

#SPJ11

A bucket crane consists of a uniform boom of mass M=201 kg and length L=59.45ft that pivots at a point on the bed of a fixed truck. The truck supports an elevated bucket with a worker inside at the other end of the boom, as shown in the figure. The bucket and the worker together can be modeled as a point mass of weight 205lb located at the end point of the boom. Suppose that when the boom makes an angle of 67.3

with the horizontal truck bed, the bucket crane suddenly loses power, causing the bucket and boom to rotate freely toward the ground. Find the magnitude of the angular acceleration ∣
α
∣ of the system just after the crane loses power. Take the rotation axis to be at the point where the boom pivots on the truck bed. Use g=9.81 m/s
2
for the acceleration due to gravity. For unit conversions, assume that 1 m=3.28ft and 1lb=4.45 N. Express your answer to at least two decimal places.

Answers

The magnitude of the angular acceleration of the system just after the crane loses power is 3.05 rad/s².

To find the angular acceleration of the system, we can apply the principle of conservation of angular momentum. Just before the crane loses power, the angular momentum of the system is zero since it is not rotating. After the crane loses power, the system starts rotating freely towards the ground.

The angular momentum of the system can be calculated as the sum of the angular momentum of the boom and the angular momentum of the bucket and worker. The angular momentum of an object can be given by the equation:

Angular momentum = Moment of inertia * Angular velocity

For the boom, the moment of inertia can be calculated using the formula for a uniform rod rotating about one end:

Moment of inertia of the boom = (1/3) * Mass of the boom * Length of the boom²

Converting the length of the boom from feet to meters:

Length of the boom = 59.45 ft * (1 m/3.28 ft) = 18.11 m

Mass of the boom = 201 kg

Moment of inertia of the boom = (1/3) * 201 kg * (18.11 m)² = 13188.27 kg·m²

The angular momentum of the boom is then given by:

Angular momentum of the boom = Moment of inertia of the boom * Angular velocity of the boom

Since the boom is not rotating initially, the angular velocity of the boom is zero.

Next, let's calculate the angular momentum of the bucket and worker. The weight of the bucket and worker can be converted from pounds to Newtons:

Weight of the bucket and worker = 205 lb * (4.45 N/1 lb) = 912.25 N

The distance between the rotation axis and the bucket and worker is the length of the boom:

Distance = 18.11 m

The moment of inertia of the bucket and worker can be approximated as a point mass at the end of the boom:

Moment of inertia of the bucket and worker = Mass of the bucket and worker * Distance²

Mass of the bucket and worker = 205 lb * (1 kg/2.2046 lb) = 92.98 kg

Moment of inertia of the bucket and worker = 92.98 kg * (18.11 m)² = 30214.42 kg·m²

The angular momentum of the bucket and worker is then given by:

Angular momentum of the bucket and worker = Moment of inertia of the bucket and worker * Angular velocity of the bucket and worker

Since the bucket and worker are not rotating initially, the angular velocity of the bucket and worker is zero.

According to the conservation of angular momentum, the sum of the initial angular momenta of the boom and the bucket and worker is equal to the final angular momentum after the crane loses power. Since the initial angular momenta are zero, the final angular momentum is also zero.

To calculate the angular acceleration, we use the equation:

Angular acceleration = Change in angular velocity / Time

Since the angular velocity changes from zero to a final value, and the time is not specified, we can assume it to be very small so that the change in angular velocity is approximately equal to the final angular velocity.

Setting the final angular momentum to zero, we can solve for the final angular velocity:

Final angular momentum = Angular momentum of the boom + Angular momentum of the bucket and worker

0 = Moment of inertia of the boom * Final angular velocity + Moment of inertia of the bucket and worker * Final angular velocity

0 = (13188.27 kg·m² + 30214.42 kg·m²) * Final angular velocity

To know more about angular acceleration click here:

https://brainly.com/question/30237820

#SPJ11

A hockey puck with mass 0.200 kg traveling cast at 12.0 m/5 strikes a puck with a mass of 250 kg heading north at 14 m/s and stick together. 9. What are the pucks final east-west velocity ? 10. What are the pucks final north-south velocity? 11 What is the magnitude of the two pucks' velocity after the collision? 12. What is the direction of the two pucks' velocity after the collision? 13. How much energy is lost in the collision?

Answers

To solve this problem, we can apply the principles of conservation of momentum and conservation of kinetic energy. Let's start by calculating the initial momentum of each puck:

Puck 1: Mass = 0.200 kg, Velocity = 12.0 m/s

Initial momentum of Puck 1 = (Mass 1) * (Velocity 1) = (0.200 kg) * (12.0 m/s) = 2.40 kg⋅m/s

Puck 2: Mass = 250 kg, Velocity = 14 m/s

Initial momentum of Puck 2 = (Mass 2) * (Velocity 2) = (250 kg) * (14 m/s) = 3500 kg⋅m/s

The total initial momentum of the system is the sum of the individual momenta:

Initial momentum = Puck 1 momentum + Puck 2 momentum = 2.40 kg⋅m/s + 3500 kg⋅m/s = 3502.40 kg⋅m/s

Since the pucks stick together after the collision, their masses combine:

Total mass = Mass 1 + Mass 2 = 0.200 kg + 250 kg = 250.200 kg

Using the principle of conservation of momentum, we can determine the final velocity of the combined puck system. Since the pucks stick together, we can write:

Total momentum = Final velocity * Total mass

Final velocity = Total momentum / Total mass = 3502.40 kg⋅m/s / 250.200 kg = 13.99 m/s

Therefore, the pucks' final velocity after the collision is 13.99 m/s in the direction they were traveling initially, which is north.

To calculate the pucks' final east-west velocity, we can use the principle that momentum is conserved in the absence of external forces in that direction. Since the initial momentum in the east-west direction is zero for both pucks, the final east-west velocity remains zero.

The pucks' final north-south velocity is 13.99 m/s.

The magnitude of the pucks' velocity after the collision is 13.99 m/s.

The direction of the pucks' velocity after the collision is north.

To determine the energy lost in the collision, we need to calculate the initial kinetic energy and final kinetic energy of the system.

Initial kinetic energy = 0.5 * (Mass 1) * (Velocity 1)^2 + 0.5 * (Mass 2) * (Velocity 2)^2

                       = 0.5 * 0.200 kg * (12.0 m/s)^2 + 0.5 * 250 kg * (14 m/s)^2

                       = 43.2 Joules + 24500 Joules

                       = 24543.2 Joules

Final kinetic energy = 0.5 * (Total mass) * (Final velocity)^2

                     = 0.5 * 250.200 kg * (13.99 m/s)^2

                     = 0.5 * 250.200 kg * 195.7201 m^2/s^2

                     = 24418.952 Joules

Energy lost in the collision = Initial kinetic energy - Final kinetic energy

                            = 24543.2 Joules - 24418.952 Joules

                            = 124.248 Joules

Therefore, the energy lost in the collision is 124.248 Joules.

To learn more about conservation of momentum and collisions in physics, you can visit the following

brainly.com/question/12996464

#SPJ11x

a ____ is a physical path or a frequency used for signal transmissions.

Answers

A channel is a physical path or a frequency used for signal transmissions.

A channel refers to a physical path or frequency used to send signals or communications between devices. It is the medium through which a message is sent from one location to another. A radio station, for example, uses a channel to transmit a signal to the radio. Furthermore, a cable television network uses a channel to transmit signals to televisions through cable lines.A channel may also refer to a specific communication path between two or more computers in a network. Every network device, such as switches, routers, and bridges, is assigned a specific channel. A channel can also refer to the frequency on which a network operates.

To learn more about frequency visit: https://brainly.com/question/254161

#SPJ11

Marking breakdown (also see Section 4.0 for the associated Marking Rubric): Strategic Approach - 1 mark Quantitative Concepts - 3 marks Qualitative Concepts - 0 marks The human body is made up of mostly carbon. Carbon has an emissivity of 0.8 when viewed in the visible spectrum (wavelength ≈550 nm ). The human body radiates with an average temperature of 37

C as a "graybody". If it were to be considered a "blackbody", what would the human body's temperature be? Assume the same total radiant exitance in either case and give your answer in degrees Celsius.

Answers

The temperature of the human body if it were to be considered a blackbody would be 22.6 °C.

The concept of blackbody and gray body is an important subject in heat transfer. When a body has an emissivity of 1, it is called a blackbody, and when it has an emissivity of less than 1, it is called a graybody.

The given data are,

The emissivity of Carbon, ε = 0.8

The wavelength of the visible spectrum, λ = 550 nm

The average temperature of the human body, T = 37 °C = 310 K

Let the temperature of the blackbody be T_bb, and the total radiant exitance in both cases be E.

The energy radiated by a blackbody is given by the Stefan-Boltzmann law as E = σ(T_bb)4, where σ is the Stefan-Boltzmann constant.

The energy radiated by a graybody is E = εσ(T_g)4, where T_g is the temperature of the graybody. Since the total radiant exitance is the same in both cases,

we have E = εσ(T_g)4

                 = σ(T_bb)4, or

T_bb = (εT_g)1/4

        = (0.8 × 310)1/4

        = 295.6 K.

To learn more on Stefan-Boltzmann law :

https://brainly.com/question/30763196

#SPJ11

For grounding electrode to which portable or mobile equipment system neutral impedance is connected, shall be isolated from the ground by at least a certain distance from any other system or equipment grounding electrode. What is this distance?
a. 4,000 mm
b. 5,000 mm
c. 6,000 mm
d. 3,000 mm

Answers

The grounding electrode for portable/mobile equipment systems should be isolated from other grounding electrodes by a distance of 6,000 mm (6 meters) to prevent unwanted electrical interactions.

According to the requirement, the grounding electrode to which the portable or mobile equipment system neutral impedance is connected should be isolated from the ground by at least a distance of 6,000 mm (or 6 meters). This distance is specified to ensure proper isolation and minimize the risk of unwanted electrical interactions between different grounding electrodes and systems.

Maintaining sufficient distance between grounding electrodes helps prevent the formation of grounding loops, which can lead to circulating currents and unwanted electrical potential differences. These grounding loops can introduce noise, interference, and instability into the electrical system, potentially affecting the performance and safety of the equipment.

By isolating the grounding electrode for the portable or mobile equipment system from other grounding electrodes, the risk of shared ground paths or coupling between systems is reduced. This ensures the integrity of the grounding system and helps maintain a reliable and stable electrical environment.

It is important to note that the specific distance requirement may vary depending on local electrical codes, standards, and specific installation considerations. Therefore, it is always recommended to consult the applicable regulations and guidelines, as well as work with qualified professionals, to ensure compliance and optimal grounding practices for the specific application.

To learn more about  electrode , click here: https://brainly.com/question/33425596

#SPJ11

(b) A body of 800Kg is subjected to a force of 80 N, which brings it to rest within a distance of 50 m. Find the starting velocity and the time taken to come to rest.

Answers

The starting velocity of the body is 20 m/s and it takes 31.6  seconds to come to rest.

To solve the problem, we can use the equation of motion:

v^2 = u^2 + 2as

where v is the final velocity (which is 0 m/s since the body comes to rest), u is the initial velocity, a is the acceleration, and s is the distance traveled.

Force (F) = 80 N

Mass (m) = 800 kg

Distance (s) = 50 m

we need to calculate the acceleration (a) using Newton's second law:

F = ma

a = F/m

a = 80 N / 800 kg

a = 0.1 m/s²

we can use the equation of motion to find the initial velocity (u):

0^2 = u^2 + 2(0.1)(50)

0 = u^2 + 10

u^2 = -10

Since velocity cannot be negative in this context, we discard the negative solution and take the positive square root:

u = √10 ≈ 3.16 m/s

Therefore, the starting velocity of the body is approximately 3.16 m/s.

Next, we can determine the time taken to come to rest using the equation of motion:

v = u + at

0 = 3.16 + (0.1)t

0.1t = -3.16

t = -3.16 / 0.1

t = -31.6 s

Since time cannot be negative in this context, we discard the negative solution.

Hence, the time taken for the body to come to rest is approximately 31.6 seconds.

To know more about velocity, refer here:

https://brainly.com/question/24259848#

#SPJ11

Other Questions
Bent Company manufactures a product that has a full cost of $800. Its target operating income per unit is $50. To stay competitive, Bent management believes it must cut its price by 10%. What will be its new target price?a. $765b. $552.50c. $637.50d. $50 in arterial thrombosis or deep vein thrombosis, platelets will _____ the production of _____. Elvis Presley a rock and roll singer became an American icon during a career that spanned over 20 years. He died at age 42. Many individuals and companies own copyrights to Presleys songs, lyrics, photographs, movies, and appearances on TV shows. Millions of dollars of Presleys copyrighted materials are sold or licensed annually.Passport Video produced a video documentary titled The Definitive Elvis comprising sixteen one hour episodes. The producers interviewed more than 200 individuals from all aspects of Elvis life. Passport sold the videos commercially for a profit. Approximately 3%-10% of the videos were comprised of copyrighted material. Passport did not receive permission for the use of the copyrighted materials. Elvis Presley Enterprises Inc and other copyright holders sued Passport for the unauthorized use of the copyrighted material.The District Court ruled in favor of the copyright holders. Did Passport act ethically in this case? Had the materials Passport used become fair use or was this a case of copyright infringement? Make sure to analyze and provide legal reasoning for your conclusion.Answer Discussion Question in paragraph format using APA in text citations, as appropriate, and include a References list. Netflank, Inc., paid a dividend of $4.18 last year. The company's management does not expect to increase its dividend in the foreseeable future. If the required rate of return is 18.5 percent, what is the current value of the stock? There is a particular vocabulary used to describe how charges combine to produce a net charge; what is that property called? ________ was the first operating system to integrate security as its core functions.A) UNIXB) DOSC) MULTICSD) ARPANET Criteria Ratings Pts This criterion is linked to a Learning OutcomeContent The student does an excellent job organizing each response to demonstrate an understanding of the concepts. All required components are included in the response, including a summary and overview of the issue; and a compare and contrast of the perspectives on the issue is present. Student identifies and explains how the articles are similar or different in how they expose the issues. Both explicit and implicit issues are clearly highlighted. 35 pts Full Marks 0 pts No Marks 35 pts This criterion is linked to a Learning OutcomeAnalysis Taking from the emergent literature (news or journal articles), student identified and evaluated some of the implications and recommendations for conducting international business. The student does an excellent job analyzing the issue(s) and does not provide a conclusion or an opinion without also providing a thoughtful explanation or the rationale. The analysis is supported by reference(s) and includes a clear and well-defined explanation of the relevant principle(s) or concept(s) from the text. 20 pts Full Marks 0 pts No Marks 20 pts This criterion is linked to a Learning OutcomeInquiries The student does an excellent job organizing each response to demonstrate an understanding of the concepts and additional questions that could be raised. Without answering them, identify at least two questions (lines of inquiry) that can be exposed from this analysis. These inquiries can be questions/issues that you were not able to answer or understand. Clarify where or how you believe you can obtain this information if you were to follow those lines of inquiry. Mention specific sources (do not simply say, "Searching on the Internet). The initial horizontal speed can be found using v0= x/t. What does v0, x and t represent? how are systems of government defined in terms of who can participate? State the domain of each composite function. 1.f(x)=2x+3;g(x)=4x 2.f(x)=3x1;g(x)=x^23.f(x)=3/(x1);g(x)=2/x ife insurance policy riders and supplementary benefits provide the following advantages except: lectone: a. May give policyholder access to higher coverage often without providing proof of insurability (i.e. G. l. B, Paid-up additions) while allowing him to pay for a lower amount of coverage now. b. Riders can be cheaper than stand-alone policies c. Riders can provide their benefits for the same or longer duration than the base policy d. Can be used to customize coverage to meet unique needs of the policy holder I have trouble finding the formulas needed to solve this problem. The following information is available for ABC inc. on April 30 for the year just ended. a. Unpaid and unrecorded salaries at year-end totaled $32.000. b. $1,020 of interest has accrued on a note payable and is unrecorded. c. The yearly depreciation on the building is $450. d. A review of the $10,000 unadjusted balance in the prepaid insurance account shows a remaining balance of $6,500 at the end of the year. e. Of the $6,500 rent paid to ABC Inc. in advance, $5,750 has not yet been earned. f. ABC inc. purchased equipment in a previous year for $21,250 and plans to sell this equipment for $1.625 at the end of its five-year useful life. g. $2,500 of advertising ABC Inc. placed in the local newspaper is unrecorded and unpaid.h. The estimated yearly depreciation on the furniture is $250. i. $2,350 of the television advertising paid for in advance has been used.j. A review of the $21,000 unadjusted balance in the prepaid rent account shows a remaining balance of $19.750 at the end of the year Prepare the required adjuting entries at April 30, 2014. Enter the transaction letter as the description when entering the fransactions in the journal. Dates must be entered in the format dd/mmm What is a training adaptation that occurs as a result of aerobic training that would benefit aerobic metabolism? Using a 60 turn square coil of side of 5cm (20 ohms) that rests between the poles of the magnet and is connected to an ammeter. When the electromagnet has been turned off, the B decreases to 2.89T in 5.2 seconds. The ammeter is measuring at a constant current of 25mA. Use this information to find the initial B, then find the current of the loop when the plane makes an angle of 37 degrees with the magnetic field (all of the other conditions remain the same), and find the direction of the induced current What would you expect to pay for a 5,486 sqm prime industrialproperty, fully leased at $176/sqm gross? The outgoings = $67/sqm.Capitalisation rate is 7%. When people maintain their position in a group over time, they displayA. mean level stability.B. rank order stability.C. personality coherence.D. possible selves. Given that the area of a circle is 100 \pi , find the circumference of this circle. a) 200 \pi b) 2 \pi c) 50 \pi d) 20 \pi e) 10 \pi f) None of the above a patch test is generally conducted behind the ear or Which of the following 19th century "tonics" contained cocaine?Dr. Tarr's LaudanumVin MarianiBlack Draught SyrupGeritol