pareho lang ba yung module 3 and week 3

Answers

Answer 1

Answer:

Question 1

Read the scenario below and answer the following questions:

You are working in Food and Flavours restaurant as a supervisor. Your female co-worker is asking an alcohol-affected customer to leave; after several overt attempts, he is trying to hug her. He refuses to leave or be pacified and attempts to get close to her. The alcohol-affected customer is unhappy about you intervening in the situation and has begun threatening you. You try to pacify him, but he bangs the table and throws away the chair. The customer takes out a small pocketknife and threatens to harm you.


Related Questions

Nancy wants to make a graph to show the relationship between the temperatures of water in degrees Celsius, and in the time in minutes for which the water is heated, she spot she puts the following points (0,50) (1,60)(2,70)(3,80)(4,90)

Answers

Nancy's data modeled by the equation y = 10x + 50 has its graph attached below.

Using the data given:

Time (in minutes) | Temperature (in degrees Celsius)

----------------|--------------------------

0 | 50

1 | 60

2 | 70

3 | 80

4 | 90

The graph which displays the data is attached below. The linear equation which models the data given is :

y = 10x + 50

Hence, the Nancy's data is represented by the graph attached below.

Learn more on linear regression:https://brainly.com/question/25987747

#SPJ1

how many hours should somone study daily for a test to get 80%+​

Answers

I would say about 4 hours a day two in the morning two at night

£x is divided in the ratio 9: 4. The larges share is £315. What is the difference in the value of the shares?​

Answers

Answer:

£175

Step-by-step explanation:

An x amount of money was split into a 9:4 ratio, and the 9 stands for 315 pounds.

We need the ratio to be proportionate to 315: x amount of money:

315/9 = 35

35 is our mulitplier:

(9:4)35 = 35x9:35x4 = 315: 140

The difference in their shares is 315-140 = 175

Neturne a Powson divitultion a. 11x=25. 4 and Px =33. c. ri.05 find R×=01 Q. P(x=31w RovNt to fout decinal poocs an netded) Rasatie a Prisanh detibution. 3. if 3=2 a . fond P(AK =3y c. If 1 o 0 . Fnd PVC +6. 6. 5(x+3)=

Answers

The answer is 21. The given equations are: 11x = 25 + 4 and Px = 33.05 Find Rx = 0.01. Using the first equation 11x = 25 + 4Solving it we get,x = (25 + 4)/11= 29/11 Putting the value of x in Px = 33.05,P(29/11) = 33.05 Now, from the Gaussian distribution formula:    P(x) = (1/σ(2π))e^(-{(x-μ)²/(2σ²)})     Here, P(29/11) = (1/σ(2π))e^(-{(29/11-μ)²/(2σ²)})= 33.05

But we do not have the value of μ and σ to solve the given equation. Hence, we cannot find the value of P(x = 31) for a normal distribution.   Finding P(X = 3), if X ~ Poisson(λ)3 = 2λ or λ = 3/2. Hence, P(X = 3) = (3/2)³ e^(-3/2)/3! = 27e^(-3/2)/8 or approximately 0.224.Let A = 1 or 0. We need to find P(A = K) + 6 Using the formula of Conditional probability P(A = K) = P(A = K|X = 0)P(X = 0) + P(A = K|X = 1)P(X = 1)

Adding the given values, we get:3/5 = 2/5 P(A = K|X = 0) + 1/5 P(A = K|X = 1) On solving, we get: P(A = K|X = 0) = 3/2, and P(A = K|X = 1) = 1/3P(A = K) = (3/2) (2/5) + (1/3) (1/5)= 7/15P(A = K) + 6 = 7/15 + 6= 49/15 Solving the equation 5(x+3) = 120 gives x = 21. Therefore, the answer is 21.

To Know more about Neturne a Powson divitultion Visit:

https://brainly.com/question/33065746

#SPJ11

Let Ln​ denote the left-endpoint sum using n subintervals and let Rn​ denote the corresponding right-endpoint sum. In the following exercise, compute the indicated left or right sum for the given function on the indicated interval. L4​ for f(x)=1/x√x−​1​ on [2,4].

Answers

The left-endpoint sum (L4) for the function f(x) = 1 / (x√(x - 1)) on the interval [2, 4] with four subintervals is given by the expression: [1 / (2√(2 - 1))] * 0.5 + [1 / (2.5√(2.5 - 1))] * 0.5 + [1 / (3√(3 - 1))] * 0.5 + [1 / (3.5√(3.5 - 1))] * 0.5.

To compute the left-endpoint sum (L4) for the function f(x) = 1 / (x√(x - 1)) on the interval [2, 4] using four subintervals, we divide the interval into four equal subintervals: [2, 2.5], [2.5, 3], [3, 3.5], and [3.5, 4].For each subinterval, we evaluate the function at the left endpoint and multiply it by the width of the subinterval. Then we sum up these products.

Let's calculate the left-endpoint sum (L4) step by step:

L4 = f(2) * Δx + f(2.5) * Δx + f(3) * Δx + f(3.5) * Δx

where Δx is the width of each subinterval, which is (4 - 2) / 4 = 0.5.

L4 = f(2) * 0.5 + f(2.5) * 0.5 + f(3) * 0.5 + f(3.5) * 0.5

Now, let's calculate the function values at the left endpoints of each subinterval:

f(2) = 1 / (2√(2 - 1))

f(2.5) = 1 / (2.5√(2.5 - 1))

f(3) = 1 / (3√(3 - 1))

f(3.5) = 1 / (3.5√(3.5 - 1))

Substituting these values back into the left-endpoint sum formula:

L4 = [1 / (2√(2 - 1))] * 0.5 + [1 / (2.5√(2.5 - 1))] * 0.5 + [1 / (3√(3 - 1))] * 0.5 + [1 / (3.5√(3.5 - 1))] * 0.5.

This expression represents the value of the left-endpoint sum (L4) for the given function on the interval [2, 4] with four subintervals.

To learn more about expression , click here:

brainly.com/question/30265549

#SPJ1

The following formula expresses the expected amount lost when a borrower defaults on a loan, where PD is the probability of default on the loan, EAD is the exposure at default (the face value of the loan), and LGD is the loss given default (expressed as a decimal). For a certain class of mortgages, 7% of the borrowers are expected to default. The face value of these mortgages averages $210,000. On average, the bank recovers 80% of the mortgaged amount if the borrower defaults by seling property. Complete a through c below. Expected Loss =PD×EAD×LGD (a) What is the expected loss on a mortgage? Expected loss =$] (Type an integer or a decimal. )

Answers

a. The expected loss on a mortgage is $11760.

The expected loss is calculated using the following formula:

Expected Loss = PD * EAD * LGD

where:

PD is the probability of default

EAD is the exposure at default

LGD is the loss given default

In this case, the PD is 7%, the EAD is $210,000, and the LGD is 0.8. This means that the expected loss is:

$11760 = 0.07 * $210,000 * 0.8

The expected loss on a mortgage is $11760. This is calculated by multiplying the probability of default by the exposure at default by the loss given default. The probability of default is 7%, the exposure at default is $210,000, and the loss given default is 0.8.

The expected loss is the amount of money that the bank expects to lose on a mortgage if the borrower defaults. The probability of default is the likelihood that the borrower will default on the loan. The exposure at default is the amount of money that the bank is exposed to if the borrower defaults. The loss given default is the amount of money that the bank will recover if the borrower defaults.

In this case, the expected loss is $11760. This means that the bank expects to lose $11760 on average for every mortgage that is issued.

Learn more about mortage here:

brainly.com/question/32087399

#SPJ11

If £1 = US$1.1605 and A$1 = US$0.8278, how many British pounds will you get for one Australian dollar?

Answers

You will get approximately £0.7139 for one Australian dollar. It's always advisable to check the current exchange rates before making any currency conversions.

To find out how many British pounds you will get for one Australian dollar, we need to use the exchange rates provided for both the British pound and the Australian dollar relative to the US dollar.

Given:

£1 = US$1.1605

A$1 = US$0.8278

To find the exchange rate between the British pound and the Australian dollar, we can divide the exchange rate for the British pound by the exchange rate for the Australian dollar in terms of US dollars.

Exchange rate: £1 / A$1

Using the given exchange rates, we have:

£1 / (US$1.1605 / US$0.8278)

Simplifying this expression, we divide the numerator by the denominator:

£1 * (US$0.8278 / US$1.1605)

The US dollar cancels out, leaving us with:

£1 * (0.8278 / 1.1605)

Now, we can calculate this expression to find the exchange rate between the British pound and the Australian dollar:

£1 * (0.8278 / 1.1605) ≈ £0.7139

Please note that exchange rates are subject to fluctuations and may vary over time. The given exchange rates were accurate at the time of the question, but they may have changed since then.

Learn more about numerator at: brainly.com/question/15007690

#SPJ11

A dog runs 18.4 meters down a sidewalk in 8.90 seconds. It then turns around and runs back the other way a distance 12.8 meters in 4.25 seconds. a. What is its average speed for the first part if its motion? b. What is its average speed for the second part if its motion? c. What is its average speed for the entire trip? d. What is the magnitude of its average velocity for the entire trip?

Answers

a. The average speed for the first part ≈ 2.067 meters per second.

b. The average speed for the second part ≈ 3.011 meters per second.

c. The average speed for the entire trip ≈ 2.374 meters per second.

d. The magnitude of the average velocity for the entire trip ≈  0.425 meters per second.

To solve this problem, we'll use the formulas for average speed and average velocity.

a. Average speed for the first part:

Average speed is calculated by dividing the total distance traveled by the total time taken.

In this case, the dog runs 18.4 meters in 8.90 seconds, so the average speed for the first part is:

Average speed = distance / time

Average speed = 18.4 meters / 8.90 seconds

Average speed ≈ 2.067 meters per second

b. Average speed for the second part:

Similarly, for the second part of the motion, the dog runs 12.8 meters in 4.25 seconds.

The average speed for the second part is:

Average speed = distance / time

Average speed = 12.8 meters / 4.25 seconds

Average speed ≈ 3.011 meters per second

c. Average speed for the entire trip:

To calculate the average speed for the entire trip, we need to consider the total distance and total time taken for both parts of the motion.

The total distance is the sum of the distances traveled in each part, and the total time is the sum of the times taken in each part.

Total distance = 18.4 meters + 12.8 meters = 31.2 meters

Total time = 8.90 seconds + 4.25 seconds = 13.15 seconds

Average speed = total distance / total time

Average speed = 31.2 meters / 13.15 seconds

Average speed ≈ 2.374 meters per second

d. Average velocity for the entire trip:

Average velocity takes into account both the magnitude and direction of the motion.

Since the dog runs in opposite directions for the two parts, its displacement for the entire trip is the difference between the two distances traveled.

The magnitude of average velocity is calculated by dividing the displacement by the total time taken.

Displacement = distance traveled in the first part - distance traveled in the second part

Displacement = 18.4 meters - 12.8 meters = 5.6 meters

Average velocity = displacement / total time

Average velocity = 5.6 meters / 13.15 seconds

Average velocity ≈ 0.425 meters per second

To know more about average speed refer here:

https://brainly.com/question/13318003#

#SPJ11

What is the sum of the first 20 terms of an arithmetic series if a=15 and t _12=−84?
Select one:
a. −141
c. −1260
d. −120

Answers

The sum of the first 20 terms of the arithmetic series is -1410.

The correct option is (a) -1410.

To find the sum of the first 20 terms of an arithmetic series, we can use the formula:

[tex]S_n = (n/2) * (a + t_n)[/tex]

where [tex]S_n[/tex] represents the sum of the first n terms, a is the first term and [tex]t_n[/tex] is the nth term.

Given that a = 15 and [tex]t_{12}[/tex] = -84, we can find the common difference (d) using the formula:

[tex]t_n = a + (n-1)d[/tex]

-84 = 15 + (12-1)d

-84 = 15 + 11d

-99 = 11d

d = -9

Now, we can find the 20th term ([tex]t_{20}[/tex]) using the same formula:

[tex]t_{20} = a + (20-1)d\\t_{20} = 15 + 19(-9)\\t_{20} = 15 - 171\\t_{20} = -156\\[/tex]

Finally, we can substitute these values into the sum formula to find the sum of the first 20 terms:

[tex]S_{20} = (20/2) * (15 + (-156))\\S_{20} = 10 * (-141)\\S_{20} = -1410[/tex]

Therefore, the sum of the first 20 terms of the arithmetic series is -1410.

The correct option is (a) -1410.

Learn more about arithmetic series at:

https://brainly.com/question/30442577

#SPJ4

Complete question:

What is the sum of the first 20 terms of an arithmetic series if a=15 and t _12=−84?

Select one:

a. −1410

b. 940

c. −1260

d. −120

Consider the simple regression model yi = ẞo + β₁xi + ∑i, i = 1,..., n. Assume that E[∑i] = 0, var[e] = o², and cov(i, j) = po² (therefore, ∑1,..., ∑n are not independent.) Consider the OLS estimators β1 and βo. Are they still unbiased?

Answers

In this model, β₁ and β₀ remain unbiased estimators of the true population parameters β₁ and β₀, respectively.

In the given simple regression model, where the errors (εᵢ) are assumed to have zero mean, constant variance (σ²), and a covariance structure of cov(εᵢ, εⱼ) = ρσ², the OLS estimators β₁ and β₀ are still unbiased.

The unbiasedness of the OLS estimators is not affected by the correlation among the errors (∑ᵢ). The bias of an estimator is determined by its expected value, and the OLS estimators are derived from the properties of the least squares method, which do not rely on the independence or lack of correlation among the errors.

Therefore, in this model, β₁ and β₀ remain unbiased estimators of the true population parameters β₁ and β₀, respectively.

To learn more about estimators

https://brainly.com/question/13575248

#SPJ11

Consider the information provided in Problem 3. What sample Sizen would be needed to construct 95% confidence intervalfor for ine population mean height with the margin of error or 0:20 inches? Showyour work for points "b f youassumethat the marginof error of the confidence interval "isso.20tinchess then what can yourtell about the range of thisi" inconfidenice intervail in We. What is the vafue of the range of the co. (in inches)? c) What samplesizen woutd be needed to construct a. 99% confidence interval for the population mean height with the margin of errot or 0 . 20 thches? Show your work. of Compara the values of samplestize nina) and ct. Whhich one is Iarger? Can youbriefly exptain why?

Answers

A)we cannot determine the sample size.B) the confidence interval can be written as: mean height ± 0.20 inches.C) the required sample size is n = (2.576)^2 (s^2) / (0.20)^2. A larger sample size is needed to construct a 99% confidence interval as compared to a 95% confidence interval.

a) Sample size n can be determined by using the formula: n = (Z_(α/2))^2 (s^2) / E^2

Here, the margin of error, E = 0.20 inches, the critical value for a 95% confidence level, Z_(α/2) = 1.96 (from the standard normal distribution table), and the standard deviation, s is not given.

Hence, we cannot determine the sample size.

b) If we assume that the margin of error of the confidence interval is 0.20 inches, then we can calculate the range of the confidence interval by multiplying the margin of error by 2 (as the margin of error extends both ways from the mean) to get 0.40 inches.

So, the confidence interval can be written as: mean height ± 0.20 inches.

 c) Using the same formula: n = (Z_(α/2))^2 (s^2) / E^2, we need to use the critical value for a 99% confidence level, which is 2.576 (from the standard normal distribution table).

So, the required sample size is n = (2.576)^2 (s^2) / (0.20)^2

Comparing the sample size for part (a) and (c), we can see that a larger sample size is needed to construct a 99% confidence interval as compared to a 95% confidence interval.

This is because, with a higher confidence level, the margin of error becomes smaller, which leads to a larger sample size. In other words, we need more data to obtain higher confidence in our estimate.

Know more about confidence interval here,

https://brainly.com/question/32546207

#SPJ11

Type the correct answer in the box

Answers

The length of the bridge between pillar B and pillar C is 56 feet.

How to calculate the length of the bridge?

In order to determine the length of the bridge between pillar B and pillar C, we would determine the magnitude of the angle subtended by applying cosine ratio because the given side lengths represent the adjacent side and hypotenuse of a right-angled triangle.

cos(θ) = Adj/Hyp

Where:

Adj represents the adjacent side of a right-angled triangle.Hyp represents the hypotenuse of a right-angled triangle.θ represents the angle.

By substituting the given side lengths cosine ratio formula, we have the following;

cos(θ) = Adj/Hyp

cos(A) = 40/50

cos(A) = 0.8

For the length of AD, we have:

Cos(A) = AD/(50 + 70)

0.8 = AD/(120)        

AD = 96 feet.

Now, we can determine the length of the bridge as follows;

x + 40 = 96

x = 96 - 40

x = 56 feet.

Read more on length here: https://brainly.com/question/6534084

#SPJ1

Tanner has 310 baseball cards. Of those, 30% are in mint condition. How many of the cards are not in mint condition?

-PLEASE ANSWER FAST, thank you:)

Answers

Tanner has 217 baseball cards that are not in mint condition.

To find out how many baseball cards are not in mint condition, we can start by calculating the number of cards that are in mint condition.

Tanner has 310 baseball cards, and 30% of them are in mint condition. To find this value, we multiply the total number of cards by the percentage in decimal form:

Number of cards in mint condition = 310 * 0.30 = 93

So, Tanner has 93 baseball cards that are in mint condition.

To determine the number of cards that are not in mint condition, we subtract the number of cards in mint condition from the total number of cards:

Number of cards not in mint condition = Total number of cards - Number of cards in mint condition

= 310 - 93

= 217

For more such question on cards. visit :

https://brainly.com/question/30295887

#SPJ8


To find the z score associated with the highest 1% of a normal
distribution, recognize that the area to the left of this z score
is
2.33
.99
-.99
.98

Answers

By looking up the value of 0.99 in a standard normal distribution table, we find that the z-score associated with an area of 0.99 to the left is approximately 2.33.

To find the z-score . with the highest 1% of a normal distribution, we need to find the z-score that corresponds to an area of 0.99 to the left of it.

The z-score is a measure of how many standard deviations an observation is above or below the mean in a normal distribution. In other words, it tells us how extreme or rare an observation is compared to the rest of the distribution.

To find the z-score associated with an area of 0.99 to the left, we can use a standard normal distribution table or a calculator.

By looking up the value of 0.99 in a standard normal distribution table, we find that the z-score associated with an area of 0.99 to the left is approximately 2.33.

Therefore, the correct answer is 2.33.

To learn more about  normal distribution click here:

brainly.com/question/25991460

#SPJ11

Gravel is being dumped from a conveyor belt at a rate of 30ft3/min, and its coarseness is such that it forms a pile in the shape of a cone whose base diameter and height are always equal. How fast (in ft/min ) is the height of the pile increasing when the pile is 6ft high? (Round your answer to two decimal places.)

Answers

The height of the pile is increasing at a rate of approximately 8.04 ft/min when the pile is 6 ft high.

To find the rate at which the height of the pile is increasing, we need to relate the variables involved and use derivatives.

Let's denote the height of the cone as h (in ft) and the radius of the cone's base as r (in ft). Since the base diameter and height are always equal, the radius is half the height: r = h/2.

The volume of a cone can be expressed as V = (1/3)πr²h. In this case, the volume is being increased at a rate of dV/dt = 30 ft³/min. We can differentiate the volume formula with respect to time (t) to relate the rates:

dV/dt = (1/3)π(2rh)(dh/dt) + (1/3)πr²(dh/dt)

Simplifying, we have:

30 = (2/3)πr²(dh/dt) + (1/3)πr²(dh/dt)

Since r = h/2, we can substitute it in:

30 = (2/3)π(h/2)²(dh/dt) + (1/3)π(h/2)²(dh/dt)

Further simplification yields:

30 = (1/12)πh²(dh/dt) + (1/48)πh²(dh/dt)

Combining the terms, we have:

30 = (1/12 + 1/48)πh²(dh/dt)

Simplifying the fraction:

30 = (4/48 + 1/48)πh²(dh/dt)

30 = (5/48)πh²(dh/dt)

To find dh/dt, we can isolate it:

dh/dt = (30/((5/48)πh²))

dh/dt = (48/5πh²) * 30

dh/dt = (1440/5πh²)

dh/dt = 288/πh²

Now, we can find the rate at which the height is increasing when the pile is 6 ft high:

dh/dt = 288/π(6²)

dh/dt = 288/π(36)

dh/dt ≈ 8.04 ft/min

Therefore, the height of the pile is increasing at a rate of approximately 8.04 ft/min when the pile is 6 ft high.

To know more about height:

https://brainly.com/question/29131380


#SPJ4

the standard deviation is a parameter, but the mean is an estimator. T/F

Answers

The statement "the standard deviation is a parameter, but the mean is an estimator" is false. An estimator is a random variable that is used to calculate an unknown parameter. Parameters are quantities that are used to describe the characteristics of a population.

The standard deviation is a parameter, while the sample standard deviation is an estimator. Likewise, the mean is a parameter of a population, and the sample mean is an estimator of the population mean. Therefore, the statement is false because the mean is a parameter of a population, not an estimator. The sample mean is an estimator, just like the sample standard deviation. In statistics, parameters are values that describe the characteristics of a population, such as the mean and standard deviation, while estimators are used to estimate the parameters of a population.

The sample mean and standard deviation are commonly used as estimators of population mean and standard deviation, respectively. The mean is a parameter of a population, not an estimator. The sample mean is an estimator of the population mean, and the sample standard deviation is an estimator of the population standard deviation. The sample standard deviation is an estimator of the population standard deviation. In statistics, parameter estimates have variability because the sample data is a subset of the population data. The variability of the estimator is measured using the standard error of the estimator. In summary, the statement "the standard deviation is a parameter, but the mean is an estimator" is false because the mean is a parameter of a population, while the sample mean is an estimator.

To know more about deviation visit:

https://brainly.com/question/29758680

#SPJ11

Suppose that the spot rate for the euro is $1.4700 and with a forward premium of 6.00%
Which of the following most closely approximates the implied forward rate of the euro in this situation?
A. -$0.0016
B. $1.5582
C. -$0.0047
D -$0.0031

Answers

The implied forward rate of the euro in this situation is most closely approximated by option B, which is $1.5582.

The spot rate for the euro is given as $1.4700. The forward premium is 6.00%. To calculate the implied forward rate, we need to add the forward premium to the spot rate.

The forward premium is given as a percentage, so we need to convert it to a decimal by dividing it by 100. In this case, 6.00% is equal to 0.06.

To calculate the implied forward rate, we add the forward premium to the spot rate:

Implied Forward Rate = Spot Rate + Forward Premium

= $1.4700 + ($1.4700 * 0.06)

= $1.4700 + $0.0882

= $1.5582

Therefore, the option B, $1.5582, most closely approximates the implied forward rate of the euro in this situation.

Learn more about forward rate here:

https://brainly.com/question/33073076

#SPJ11

Find a basis for and the dimension of the solution space of the homogeneous system of linear equations.

3x1 + 3x2 + 15x3 + 11x4 = 0
x1 − 3x2 + x3 + x4 = 0
2x1 + 3x2 + 11x3 + 8x4 = 0
(a) a basis for the solution space

(b) the dimension of the solution space

Answers

(a) A basis for the solution space of the homogeneous system of linear equations is:

{(-3, 1, 0, 0), (-5, 0, -5, 1)}

(b) The dimension of the solution space is 2.

To find a basis for the solution space, we first write the augmented matrix of the system and row-reduce it to its echelon form or reduced row-echelon form.

Then, we identify the free variables (variables that can take any value) and express the dependent variables in terms of the free variables. The basis for the solution space consists of the vectors corresponding to the free variables.

In this case, after performing row operations, we obtain the reduced row-echelon form:

[1 0 -1 -1 0]

[0 1 3 2 0]

[0 0 0 0 0]

The first and second columns correspond to the free variables x3 and x4, respectively. Setting these variables to arbitrary values, we can express x1 and x2 in terms of x3 and x4 as follows: x1 = -x3 - x4 and x2 = -3x3 - 2x4. Therefore, a basis for the solution space is {(-3, 1, 0, 0), (-5, 0, -5, 1)}.

Since the basis has 2 vectors, the dimension of the solution space is 2.

For more such answers on Linear Equation

https://brainly.com/question/2030026

#SPJ8

Use cylindrical coordinates to evaluate the triple integral ∭E​x2+y2​dV, where E is the solid bounded by the circular paraboloid z=1−1(x2+y2) and the xy-plane.

Answers

The value of the triple integral ∭E​x^2 + y^2​dV is π/30. To evaluate the triple integral  , we can use cylindrical coordinates.

In cylindrical coordinates, the equation of the circular paraboloid becomes z = 1 - r^2, where r represents the radial distance from the z-axis. The bounds for the triple integral are as follows: ρ varies from 0 to √(1 - z); φ varies from 0 to 2π; z varies from 0 to 1. The integral becomes: ∭E​x^2 + y^2​dV = ∫(0 to 1) ∫(0 to 2π) ∫(0 to √(1 - z)) (ρ^2) ρ dρ dφ dz. Simplifying, we have: ∭E​x^2 + y^2​dV = ∫(0 to 1) ∫(0 to 2π) [ρ^3/3] evaluated from 0 to √(1 - z) dφ dz. ∭E​x^2 + y^2​dV = ∫(0 to 1) ∫(0 to 2π) [(1 - z)^3/3] dφ dz.

Evaluating the integral, we get: ∭E​x^2 + y^2​dV = ∫(0 to 1) [2π(1 - z)^4/12] dz. ∭E​x^2 + y^2​dV = [2π(1 - z)^5/60] evaluated from 0 to 1. ∭E​x^2 + y^2​dV = 2π/60 = π/30.  Therefore, the value of the triple integral ∭E​x^2 + y^2​dV is π/30.

To learn more about triple integral click here: brainly.com/question/30404807

#SPJ11

The time until recharge for a battery in a laptop computer under common conditions is normally distributed with a mean of 260 minutes and a standard deviation of 50 minutes. (a) What is the probability that a battery lasts more than four hours? (b) What are the quartiles (the 25% and 75% values) of battery life? (c) What value of life in minutes is exceeded with 95% probability?

Answers

(a)  The probability that a battery lasts more than four hours is 0.6554 or about 65.54%.

(b) The quartiles (the 25% and 75% values) of battery life are about 228.28 minutes and about 291.73 minutes.

(c) Value of life in minutes is exceeded with a 95% probability of about 181.78 minutes.

(a)Probability that a battery lasts more than four hours:

Since 1 hour = 60 minutes, four hours = 4 × 60 = 240 minutes.

To find the probability that a battery lasts more than four hours, we need to find the area under the normal distribution curve to the right of x = 240, which can be calculated as follows:z = (240 - 260) / 50 = -0.4

Using a standard normal distribution table or a calculator, the probability of z being less than or equal to -0.4 is 0.3446. Therefore, the probability of a battery lasting more than four hours is 1 - 0.3446 = 0.6554 or about 65.54%.

(b)Quartiles (the 25% and 75% values) of battery life: To find the quartiles, we can use the formula:z = (x - μ) / σwhere z is the z-score corresponding to the given percentage or quartile, x is the unknown value of battery life in minutes, μ is the mean battery life in minutes (260), and σ is the standard deviation of battery life in minutes (50).

For the 25th percentile, we need to find z such that the area under the curve to the left of z is 0.25:0.25 = Φ(z), where Φ(z) is the standard normal cumulative distribution function. Using a standard normal distribution table or a calculator, we can find that the z-score for the 25th percentile is -0.6745.z = (x - μ) / σ-0.6745 = (x - 260) / 50

Solving for x, we get x = -0.6745(50) + 260= 228.275For the 75th percentile, we need to find z such that the area under the curve to the left of z is 0.75:0.75 = Φ(z)

Using a standard normal distribution table or a calculator, we can find that the z-score for the 75th percentile is 0.6745.z = (x - μ) / σ0.6745 = (x - 260) / 50

Solving for x, we get:x = 0.6745(50) + 260= 291.725.

Therefore, the 25th percentile of battery life is about 228.28 minutes and the 75th percentile is about 291.73 minutes.

(c) Value of life in minutes exceeded with 95% probability: To find the value of battery life in minutes that is exceeded with 95% probability, we need to find the z-score such that the area under the curve to the right of z is 0.95:0.95 = 1 - Φ(z)Φ(z) = 1 - 0.95 = 0.05

Using a standard normal distribution table or a calculator, we can find that the z-score for Φ(z) = 0.05 is -1.645.z = (x - μ) / σ-1.645 = (x - 260) / 50

Solving for x, we get:x = -1.645(50) + 260= 181.775

Therefore, the value of battery life in minutes that is exceeded with 95% probability is about 181.78 minutes (rounded to two decimal places).

To learn about probability here:

https://brainly.com/question/251701

#SPJ11

The probability that a randomly chosen American household owns a gun is 0.43 (source). The probability that a randomly chosen American household owns a refrigerator is 0.992.

Assuming that every household that owns a gun also owns a refrigerator, what is the probability that a randomly chosen household owns a gun OR does not own a refrigerator?

Answers

The probability that a randomly chosen household owns a gun OR does not own a refrigerator is 0.974.

The probability of a randomly chosen household owning a gun is given as 0.43. The probability of a randomly chosen household owning a refrigerator is given as 0.992.

As it is assumed that every household that owns a gun also owns a refrigerator, the probability of owning a gun and a refrigerator can be given as 0.43. The probability of not owning a refrigerator can be given as (1 - 0.992) = 0.008.

Therefore, the probability that a randomly chosen household owns a gun OR does not own a refrigerator can be given as the sum of the probabilities of owning a gun and not owning a refrigerator and the probability of owning a refrigerator as follows:

P(owning a gun or not owning a refrigerator) = P(owning a gun) + P(not owning a refrigerator) - P(owning a gun and not owning a refrigerator)= 0.43 + 0.008 - (0.43 x 0.008)= 0.974.

To learn about probability here:

https://brainly.com/question/251701

#SPJ11

Two objects form a system. The mass of object 1 is 3 times more massive than the mass of object 2 : m
1

=3m
2

. At a certain instant, object 1 is at location ⟨10,−8,6⟩m, moving with velocity ⟨4,6,−2⟩m/s. At the same instant, object 2 is at location ⟨3,0,−2⟩m, moving with velocity ⟨−8,2,7⟩m/s. a. What is the location of the center of mass? b. What is the velocity of the center of mass? c. What is the total momentum of the system?

Answers

a. The center of mass is located at ⟨6, −2, 2⟩m.
b. The velocity of the center of mass is ⟨0.4, 2.8, 2.4⟩m/s.
c. The total momentum of the system is 0 kg⋅m/s.


a. To find the location of the center of mass, we can use the formula:

r_cm = (m1 * r1 + m2 * r2) / (m1 + m2)

Given that m1 = 3m2, we substitute this relationship into the equation and calculate:

r_cm = (3m2 * ⟨10, -8, 6⟩ + m2 * ⟨3, 0, -2⟩) / (3m2 + m2) = ⟨6, -2, 2⟩m

b. The velocity of the center of mass can be determined using the formula:

v_cm = (m1 * v1 + m2 * v2) / (m1 + m2)

Substituting the given values:

v_cm = (3m2 * ⟨4, 6, -2⟩ + m2 * ⟨-8, 2, 7⟩) / (3m2 + m2) = ⟨0.4, 2.8, 2.4⟩m/s

c. The total momentum of the system is the sum of the individual momenta:

P_total = m1 * v1 + m2 * v2

Substituting the given values:

P_total = 3m2 * ⟨4, 6, -2⟩ + m2 * ⟨-8, 2, 7⟩ = (12m2, 18m2, -6m2) + (-8m2, 2m2, 7m2) = (4m2, 20m2, m2)

Since the masses are proportional (3m2 : m2), the total momentum simplifies to:

P_total = (4, 20, 1)m2 kg⋅m/s

Therefore, the total momentum of the system is 0 kg⋅m/s.

Learn more about Equation click here :brainly.com/question/13763238

#SPJ11

Fruits on a bush are in one of three states: unripe, ripe or over-ripe. During each week after producing an initial crop of unripe fruit. 10% of unripe fruits will ripen. 10% of ripe fruits will become over-ripe and 20% of over-ripe fruits will fall off the bush. Assuming that the same number of new unripe fruits appear as over-ripe fruits fall off in a week, determine the steady state percentages of fruit that are unripe (U), ripe (R) or over-ripe (O). Enter the percentage values of U, R and O below, correct to one decimal place.
U =
R=
0 =

Answers

The steady-state percentages of fruit that are unripe, ripe, or overripe are 50%, 50%, and 25%, respectively.

Fruits on a bush are in one of three states: unripe, ripe or overripe. During each week after producing an initial crop of unripe fruit. 10% of unripe fruits will ripen, 10% of ripe fruits will become overripe, and 20% of overripe fruits will fall off the bush. Assuming that the same number of new unripe fruits appear as overripe fruits fall off in a week, the steady-state percentages of fruit that are unripe, ripe, or overripe is to be determined, and the percentage values of U, R, and O are to be entered below, correct to one decimal place.

Calculation:Let x, y, and z be the percentages of unripe, ripe, and overripe fruit, respectively, and let K be the total number of fruits, then the percentage of unripe fruit that will ripen is 10% of x. This suggests that the percentage of ripe fruit will increase by 10% of x, i.e., 0.1x.The percentage of ripe fruit that becomes overripe is 10% of y, and the percentage of overripe fruit that falls off the bush is 20% of z.

Therefore, the percentage of overripe fruit will reduce by 10% of y and 20% of z, i.e., 0.1y + 0.2z. According to the problem, the number of new unripe fruits will equal the number of overripe fruits that fall off, or0.1x = 0.2z ⇒ z = 0.5x. Now, since K is the total number of fruits,x + y + z = 100 ⇒ x + y + 0.5x = 100⇒ 1.5x + y = 100. Also, the change in the number of ripe fruit is equal to the difference between the number of ripened unripe fruit and the number of ripe fruit that becomes overripe orx × 0.1 − y × 0.1 = 0⇒ x = y, or the number of unripe fruits equals the number of ripe fruits.Let's substitute y for x in the equation 1.5x + y = 100 and simplify:y = 100 − 1.5xy = 100 − 1.5y ⇒ y = 50 ⇒ x = 50Now, z = 0.5x = 0.5(50) = 25

Hence, the percentage values of U, R, and O are as follows:U = x = 50%R = y = 50%O = z = 25%Therefore, the steady-state percentages of fruit that are unripe, ripe, or overripe are 50%, 50%, and 25%, respectively.

Learn more about Value here,https://brainly.com/question/11546044

#SPJ11

A researcher is interested in determining the practical significance of a statistically significant difference (p < .01) between the achievements of Grade 10 and Grade 11 learners in an emotional intelligence test.

Answers

The researcher is interested in determining the practical significance of a statistically significant difference (p < .01) between the achievements of Grade 10 and Grade 11 learners in an emotional intelligence test.

To assess the practical significance of the statistically significant difference, the researcher should consider effect size measures. Effect size quantifies the magnitude of the difference between groups and provides information about the practical significance or real-world importance of the findings.

One commonly used effect size measure is Cohen's d, which indicates the standardized difference between two means. By calculating Cohen's d, the researcher can determine the magnitude of the difference in emotional intelligence scores between Grade 10 and Grade 11 learners.

Interpreting the effect size involves considering conventions or guidelines that suggest what values of Cohen's d are considered small, medium, or large. For example, a Cohen's d of 0.2 is often considered a small effect, 0.5 a medium effect, and 0.8 a large effect.

By calculating and interpreting Cohen's d, the researcher can determine if the statistically significant difference in emotional intelligence scores between Grade 10 and Grade 11 learners is practically significant. This information would provide insights into the meaningfulness and practical implications of the observed difference in achievement.

learn more about "researcher ":- https://brainly.com/question/25257437

#SPJ11

WIII nave Just enough porder to IIne the front of the four gardens. * True False 4. Which is the best estimate to find the quotient for 657/54 ? * a. 500/50 b. 600/50 c. 600/60 d. 700/50 5. Which is the quotient of 10.276 / 2.8? a. 367 b. 36.7 c. 3.67 d. 0.367 6. Which is the total cost of 3.5 pounds of grapes at $2.10 a pound? a. $5.60 b. $6.35 c. $7.04 d. $7.35

Answers

The first statement is grammatically incorrect and should be False. For question 4, the best estimate to find the quotient of 657/54 is option d) 700/50. For question 5, the quotient of 10.276/2.8 is option c) 3.67. For question 6, the total cost of 3.5 pounds of grapes at $2.10 a pound is option b) $6.35.

The first statement is grammatically incorrect, and since the word "porder" is not clear, it is impossible to determine its meaning. Therefore, the statement is False.

For question 4, to estimate the quotient of 657/54, we can round both numbers to the nearest tens. 657 rounds to 700, and 54 rounds to 50. So, the best estimate is 700/50, which is option d).

For question 5, to find the quotient of 10.276/2.8, we divide the decimal numbers as usual. The quotient is approximately 3.67, which matches option c).

For question 6, to calculate the total cost of 3.5 pounds of grapes at $2.10 a pound, we multiply the weight (3.5) by the price per pound ($2.10). The result is $7.35, which matches option b).

Learn more about multiply : brainly.com/question/620034?

#SPJ11

Write the standard form of the equation of the line described.
through: (2,-5), parallel to y=4x+5

Answers

The standard form of the equation of the line described is 4x - y = 18.

To find the equation of a line parallel to y = 4x + 5, we know that parallel lines have the same slope. The given line has a slope of 4 since it is in the form y = mx + b, where m represents the slope. Therefore, our parallel line will also have a slope of 4.

Using the point-slope form of a linear equation, we can write the equation as follows:

y - y₁ = m(x - x₁)

Substituting the coordinates of the given point (2, -5) and the slope (4) into the equation, we have:

y - (-5) = 4(x - 2)

Simplifying the equation, we get:

y + 5 = 4x - 8

Rearranging the terms to put the equation in standard form, we have:

4x - y = 18

Therefore, the standard form of the equation of the line described, which passes through the point (2, -5) and is parallel to y = 4x + 5, is 4x - y = 18.

To know more about the point-slope form of a linear equation, refer here:

https://brainly.com/question/29630521#

#SPJ11

Let θ be the angle in standard position whose terminal side contains the given point, then compute cosθ and sin θ. (4,−1)

Answers

The given point, then compute cosθ and sin θ. (4,−1) cosθ ≈ 0.9412 and sinθ ≈ -0.2357.

To compute cosθ and sinθ for the point (4, -1), we can use the formulas:

cosθ = x / r

sinθ = y / r

where x and y are the coordinates of the point, and r is the distance from the origin to the point, also known as the radius or magnitude of the vector (x, y).

In this case, x = 4, y = -1, and we can calculate r using the Pythagorean theorem:

r = √(x^2 + y^2) = √(4^2 + (-1)^2) = √(16 + 1) = √17

Now we can compute cosθ and sinθ:

cosθ = 4 / √17

sinθ = -1 / √17

So, cosθ ≈ 0.9412 and sinθ ≈ -0.2357.

To know more about compute refer here:

https://brainly.com/question/15707178#

#SPJ11

The mean of two large samples of 2000 and 3000 members are 67 and 69 respectively. Can
the samples be regarded as drawn from the same population if S.D. is 4 with level of significance
5% (Z value at 5 % l.o.s.is 1.96)?

Answers

The samples cannot be regarded as drawn from the same population. The conclusion is based on a significance level of 5%.

The significance level is used in hypothesis testing to determine if the null hypothesis should be rejected. The null hypothesis for this question is that the samples are drawn from the same population. The mean of two large samples of 2000 and 3000 members are 67 and 69 respectively.

To determine whether the samples can be regarded as drawn from the same population if the standard deviation is 4 with a level of significance of 5% (Z value at 5% l.o.s. is 1.96), the following steps should be taken:

Step 1: Establish the null and alternative hypothesis.Here, the null hypothesis is that the samples are drawn from the same population while the alternative hypothesis is that the samples are not drawn from the same population. The null and alternative hypotheses are given as follows: H0: µ1 = µ2 Ha: µ1 ≠ µ2 .

Step 2: Find the critical value for a 5% level of significance. The critical value can be obtained using a standard normal distribution table. For a 5% level of significance, the critical value is 1.96.

Step 3: Calculate the standard error of the mean difference. The standard error of the mean difference can be calculated as follows: σd = √[(σ1^2 / n1) + (σ2^2 / n2)] where σd = standard error of the mean difference, σ1 = standard deviation of sample 1, n1 = sample size of sample 1, σ2 = standard deviation of sample 2, n2 = sample size of sample 2. σd = √[(4^2 / 2000) + (4^2 / 3000)] σd = 0.082.

Step 4: Calculate the test statistic. The test statistic can be calculated using the formula below: Z = (x1 - x2) / σd where x1 = sample mean of sample 1, x2 = sample mean of sample 2, σd = standard error of the mean difference. Z = (67 - 69) / 0.082 Z = -24.39 .

Step 5: Compare the test statistic with the critical value. Since the test statistic (-24.39) is less than the critical value (1.96), we reject the null hypothesis and conclude that the samples are not drawn from the same population.

Therefore, the samples cannot be regarded as drawn from the same population. The conclusion is based on a significance level of 5%.

Learn more about hypothesis here,

https://brainly.com/question/606806

#SPJ11

Suppose that the function f(x)=
9.6
1

(−x
4
+8x) represented a distribution of molecular speeds over the range 0 to 2 . What is the averag value for x
2
? Write your answer with two decimal places.

Answers

The average value of x^2 for the given function f(x) is approximately 1.47.

To find the average value of x^2 for the given function f(x), we need to calculate the definite integral of x^2 multiplied by f(x) over the given range [0, 2], and then divide it by the integral of f(x) over the same range.

The average value of x^2 is given by:

Average value of x^2 = (1/(2-0)) * ∫[0, 2] (x^2 * f(x)) dx / ∫[0, 2] f(x) dx

Let's calculate the integrals:

∫[0, 2] (x^2 * f(x)) dx = ∫[0, 2] (x^2 * (9.6 / (-x^4 + 8x))) dx

= 9.6 * ∫[0, 2] (x^2 / (-x^4 + 8x)) dx

∫[0, 2] f(x) dx = ∫[0, 2] (9.6 / (-x^4 + 8x)) dx

Now, we can evaluate these integrals numerically.

Using numerical integration methods or a symbolic math software, we find:

∫[0, 2] (x^2 * f(x)) dx ≈ 3.99

∫[0, 2] f(x) dx ≈ 1.36

Finally, we can calculate the average value of x^2:

Average value of x^2 ≈ (1/(2-0)) * 3.99 / 1.36 ≈ 1.47

Therefore, the average value of x^2 for the given function f(x) is approximately 1.47.

To know more about range, visit:

https://brainly.com/question/29204101

#SPJ11

Let X t be a Poisson process with parameter λ. Independently, let T∼Exp(μ). Find the probability mass function for X(T)

Answers

We have derived the probability mass function for X(T). The answer is P(X(T) = k) = (λ/μ)ᵏ Tᵏ e⁻(λ-μ)ᵀᵒᵗ / k! for k ≥ 0 and T > 0.Note: The probability mass function only depends on k and T. It does not depend on the arrival times of the Poisson process, X.

Given that Xₜ is a Poisson process with parameter λ and T∼Exp(μ). We are to find the probability mass function for X(T).Solution:Xₜ ~ Poisson(λt), where λ is the rate parameter for the Poisson process.λ is the average number of events in a unit time and t is time. Similarly, the exponential distribution with parameter μ gives us the probability density function, fₜ(t), of the random variable T as shown below:fₜ(t) = μe⁻ᵐᵘᵗ, where t ≥ 0We can evaluate the probability mass function for X(T) as follows;P(X(T) = k) = P(There are k events in the interval (0, T])

Now, consider the event A = {There are k events in the interval (0, T]}.This event occurs if and only if the following conditions are met:Exactly k events occur in the interval (0, T], which is a Poisson distribution with mean λT.T is the first arrival time, which is exponentially distributed with parameter μ. The probability that the first event takes place in the interval (0, t) is given by P(T < t).

Hence the probability mass function of X(T) is given by:P(X(T) = k) = P(A) = ∫⁰ₜ P(T < t) [ (λt)ᵏ e⁻λᵀᵒᵗ / k! ]μe⁻ᵐᵘᵗ dt= ∫⁰ₜ μe⁻ᵐᵘᵗ (λt)ᵏ e⁻λᵀᵒᵗ / k! dT= (λ/μ)ᵏ Tᵏ e⁻(λ-μ)ᵀᵒᵗ / k! where T = min{t : Xₜ = k}Hence, we have derived the probability mass function for X(T). The answer is P(X(T) = k) = (λ/μ)ᵏ Tᵏ e⁻(λ-μ)ᵀᵒᵗ / k! for k ≥ 0 and T > 0.Note: The probability mass function only depends on k and T. It does not depend on the arrival times of the Poisson process, X.

Learn more about Probability here,https://brainly.com/question/13604758

#SPJ11

Other Questions
What limits the power of the government? As a driver, you can lower the level of risk by __________.a. signalingb. adjusting your speed and space based on your visibilityc. searching the entire traffic scene for hazardsd. All of these answers are correct How has the two-midnight rule impacted the design and operations of healthcare? You're going on a trip to Africa, a place you know little about. How can you make the most of the trip and learn from it?Check all that apply.A. Observe everythingB. Be open to experiencesC. Live and learnD. Ask questions All of the following are excluded from coverage in an individual health insurance policy EXCEPT where does the north (or south) celestial pole appear in miami sky? magnitude direction m counterclockwise from the +x-axs a property owner conveys a house to a parent and stipulates that upon the parent's death he will recapture ownership. the interest the owner has in the property is a which of the following molecules, is formed when product e of the butlerov reaction undergoes ring closure? The first state to pass laws designed to deter marijuana use was :MaineNew YorkOhioTexas what type of police communication is considered a ""lost art""? : Zoe Young is a citizen of Argentina. She is employed by Idols (Pty) Limited, a South African company, at its branch in Argentina. Before 29 June 2014 (see below) she had never been to South Africa. She is not ordinarily resident in South Africa. Zoe Young was physically present in the following countries for the following periods, and for the following purposes: 2015 year of assessment - 1 March 2014 to 28 June 2014 working in Argentina (120 days), and - 29 June 2014 to 28 February 2015 working in South Africa (245 days). 2016 year of assessment - 1 March 2015 to 31 August 2015 working in South Africa (184 days), and - 1 September 2015 to 29 February 2016 working in Argentina (182 days). 2017 year of assessment - 1 March 2016 to 1 September 2016 working in Argentina (185 days), and - 2 September 2016 to 28 February 2017 working in South Africa (180 days). 2018 year of assessment - 1 March 2017 to 22 May 2017 working in South Africa (83 days), - 23 May 2017 to 17 February 2018 working in Argentina (271 days), and - 18 February 2018 to 28 February 2018 working in South Africa (11 days). 2019 year of assessment - 1 March 2018 to 31 May 2018 working in Argentina (92 days), - 1 June 2018 to 30 June 2018 on holiday in the United Kingdom ( 30 days), and - 1 July 2018 to 28 February 2019 working in South Africa (243 days). 2020 year of assessment - 1 March 2019 to 31 May 2019 working in South Africa (92 days), - 1 June 2019 to 31 July 2019 working in Argentina (61 days), - 1 August 2019 to 31 October 2019 working in South Africa (92 days), - 1 November 2019 to 30 November 2019 on holiday in South Africa (30 days), and - 1 December 2019 to 29 February 2020 working in Argentina (91 days). 2021 year of assessment - 1 March 2020 to 31 October 2020 working in Argentina (245 days), - 1 November 2020 to 30 November 2020 working in South Africa (30 days), - 1 December 2020 to 31 December 2020 on holiday in France (31 days), and - 1 January 2021 to 28 February 2021 working in Argentina (59 days). You are required to 1. determine whether Zoe Young is a resident of the Republic for the 2020 year of assessment, 2. if she is, state from which date she is subject to normal tax as a resident, 3. if she is, state from which date she ceases to be subject to normal tax as a resident, 4. determine whether she is a resident of the Republic for the 2021 year of assessment, and 5. Re-determine whether she is a resident of the Republic for the 2021 year of assessment on the basis that she had been working in Argentina from 1 March 2020 to 31 October 2020 (245 days) and working in South Africa from 1 November 2020 to 28 February 2021 (120 days). what is the apparent path of the sun against the background of stars? In the Milgram study on obedience, subjects believed they were giving shocks to another participant to punish them for incorrect responding. The shocks increased in magnitude, and the shocked participant protested loudly that he was in great pain. Most of the subjects delivering shocks_____________________a. stopped as soon as they heard protests from the shocked subjectb. gleefully continued to give shocks because they thought it was func. continued reluctantly to give extremely dangerous shocks, because the experimenter told them to continued. only continued if they were paid a large sum of money in innovation, it is mandatory for a person to be sure how a new idea is going to turn out. please may you answer this question pleaseIn a paragraph When people use "bad" data about the sexindustry to fighting sex trafficking, who and/or what isharmed? What is not a benefit of healthy competition for consumers? A. increases product choiceB. increases profitability C. keeps prices lowD. fosters innovation Given the following information calculate the EAC and select from list below. Project is planned for 12 months PV $30000 EV $26000 AC$29000 BAC $252000 a. $293,023.25 b. $296,023.78 c. $197, 043.96 d. $256,354,47 1. Question 1 (2 pts): Explain the OLS method in your own two sentences. You may need to use a graph. 2. Question 2(1pt) : If you estimate a regression equation by using the OLS method, what is value of the sum of the residuals? 3. Question 3 (2 pts): List five main classical assumptions of the OLS method. 4. Question 4 (1 pt): Define an error term with serial correlation of order 1. Given an example of serial correlation. Suggest a correction method for this type of serial correlation. Which of the following statement yield 5?Select one:a.3/6E1+5%5*2b.3/6E-1+5%5*2c.3/6E1+5/5*2d.3+5%5*2