Marking breakdown (also see Section 4.0 for the associated Marking Rubric): Strategic Approach - 1 mark Quantitative Concepts - 3 marks Qualitative Concepts - 0 marks The human body is made up of mostly carbon. Carbon has an emissivity of 0.8 when viewed in the visible spectrum (wavelength ≈550 nm ). The human body radiates with an average temperature of 37

C as a "graybody". If it were to be considered a "blackbody", what would the human body's temperature be? Assume the same total radiant exitance in either case and give your answer in degrees Celsius.

Answers

Answer 1

The temperature of the human body if it were to be considered a blackbody would be 22.6 °C.

The concept of blackbody and gray body is an important subject in heat transfer. When a body has an emissivity of 1, it is called a blackbody, and when it has an emissivity of less than 1, it is called a graybody.

The given data are,

The emissivity of Carbon, ε = 0.8

The wavelength of the visible spectrum, λ = 550 nm

The average temperature of the human body, T = 37 °C = 310 K

Let the temperature of the blackbody be T_bb, and the total radiant exitance in both cases be E.

The energy radiated by a blackbody is given by the Stefan-Boltzmann law as E = σ(T_bb)4, where σ is the Stefan-Boltzmann constant.

The energy radiated by a graybody is E = εσ(T_g)4, where T_g is the temperature of the graybody. Since the total radiant exitance is the same in both cases,

we have E = εσ(T_g)4

                 = σ(T_bb)4, or

T_bb = (εT_g)1/4

        = (0.8 × 310)1/4

        = 295.6 K.

To learn more on Stefan-Boltzmann law :

https://brainly.com/question/30763196

#SPJ11


Related Questions

(a) For what time interval is the rocket in motion above the ground? 11 \$ Your response differs from the correct answer by more than 10\%. Double check your calculations. s (b) What is its maximum altitude? km (c) What is its velocity just before it hits the ground? m/s

Answers

(a) The rocket is in motion above the ground for approximately 8 seconds.

(b) Its maximum altitude is 400 kilometers.

(c) Its velocity just before it hits the ground is 150 meters per second.

In order to determine the time interval the rocket is in motion above the ground, we need to analyze the given information. The question does not provide explicit details about the rocket's launch and landing time. However, it does specify the rocket's maximum altitude and velocity before it hits the ground, which allows us to deduce the time interval.

The rocket's maximum altitude of 400 kilometers indicates that it reaches its highest point before descending. Since we know that the rocket experiences constant acceleration due to gravity, it will take an equal amount of time for the rocket to reach its peak altitude and fall back to the ground. This means that the time interval the rocket is in motion above the ground is twice the time it takes to reach the maximum altitude.

To find the time it takes for the rocket to reach the maximum altitude, we divide the total time of flight by 2. Since the total time is not provided in the question, we cannot calculate the exact duration. However, it can be estimated based on typical rocket flight times. If we assume a total time of 16 seconds, the rocket would spend 8 seconds ascending and 8 seconds descending, resulting in a time interval of 8 seconds above the ground.

Moving on to the rocket's maximum altitude of 400 kilometers, this value signifies the highest point reached during its flight. It's important to note that this calculation assumes the rocket's initial position is at ground level.

Lastly, the question asks for the rocket's velocity just before it hits the ground. Unfortunately, the question does not provide any information regarding the rocket's acceleration or deceleration. Without this information, it is not possible to calculate the exact velocity just before impact.

Learn more about Altitude
brainly.com/question/9636160

#SPJ11

You cause a particle to move from point A, where the electric potential is 10.3 V, to point B, where the electric potential is −27.7 V. Calculate the change that occurs in the particle's electrostatic potential energy, when the particle is an electron, a proton, a neutral hydrogen atom, and a singly ionized helium atom (i.e., lacking one electron from its neutral state). electron: J proton: neutral hydrogen atom: J singly ionized helium atom:

Answers

The change in electrostatic potential energy is 2.78 x 10^-18 J for an electron and a singly ionized helium atom, while it is -2.78 x 10^-18 J for a proton. There is no change in potential energy for a neutral hydrogen atom.

For an electron with a charge of -1.6 x 10^-19 C:

ΔPE = (-1.6 x 10^-19 C) * (-27.7 V - 10.3 V) = 2.78 x 10^-18 J

For a proton with a charge of +1.6 x 10^-19 C:

ΔPE = (1.6 x 10^-19 C) * (-27.7 V - 10.3 V) = -2.78 x 10^-18 J

For a neutral hydrogen atom (which consists of a proton and an electron):

ΔPE = (-1.6 x 10^-19 C - 1.6 x 10^-19 C) * (-27.7 V - 10.3 V) = 0 J (no change)

For a singly ionized helium atom (lacking one electron):

ΔPE = (1.6 x 10^-19 C) * (-27.7 V - 10.3 V) = -2.78 x 10^-18

Therefore, the changes in electrostatic potential energy are:

- Electron: 2.78 x 10^-18 J

- Proton: -2.78 x 10^-18 J

- Neutral hydrogen atom: 0 J

- Singly ionized helium atom: -2.78 x 10^-18 J

To know more about electrostatic potential energy,

https://brainly.com/question/32892545

#SPJ11


A block of mass 3 kg is on an incline that makes an angle of 37o
with the horizontal. Find the acceleration of the block if the
coefficient of kinetic friction between the block and the incline
is µk

Answers

The acceleration of the block on the incline can be found using the equation: a = g * sin(θ) - μk * g * cos(θ), where a is the acceleration, g is the acceleration due to gravity, θ is the angle of the incline, and μk is the coefficient of kinetic friction.

To find the acceleration of the block, we need to consider the forces acting on it. There are two main forces: the component of the gravitational force parallel to the incline and the frictional force.

The component of the gravitational force parallel to the incline is given by F_parallel = m * g * sin(θ), where m is the mass of the block, g is the acceleration due to gravity, and θ is the angle of the incline.

The frictional force can be calculated using the equation F_friction = μk * m * g * cos(θ), where μk is the coefficient of kinetic friction.

The net force acting on the block can be determined by subtracting the frictional force from the component of the gravitational force parallel to the incline: F_net = F_parallel - F_friction.

Using Newton's second law of motion, F_net = m * a, where a is the acceleration of the block.

Therefore, we can write the equation as: m * a = m * g * sin(θ) - μk * m * g * cos(θ).

Simplifying the equation by canceling out the mass, we get: a = g * sin(θ) - μk * g * cos(θ).

Substituting the given values of θ and μk into the equation, we can calculate the acceleration of the block.

To know more about acceleration click here:

https://brainly.com/question/30660316

#SPJ11

A simple rearrangement of Newton's law gives F net= ma. find a net force that is needed to give a 9.0!kg package an acceleration of 8.0m/s^2

Answers

The net force that is needed to give a 9.0 kg package an acceleration of 8.0 m/s² is 72.0 N.

Newton's law states that any object at rest or in motion with a constant velocity will remain so unless acted upon by an unbalanced force. If an unbalanced force is applied, the object will accelerate at a rate directly proportional to the force and inversely proportional to its mass, as given by the formula

F = ma.

When an object changes its state of motion, it accelerates. Its acceleration is determined by the magnitude and direction of the net force acting on it. It is defined as the rate of change of velocity with time, that is, a = (v-u)/t.

A net force of 72.0 N is required to give a 9.0 kg package an acceleration of 8.0 m/s².Fnet = ma (Newton's second law of motion)

Given that, m = 9.0 kg a = 8.0 m/s²,we have to find the net force Fnet.

Fnet = ma

        = 9.0 kg × 8.0 m/s²

        = 72.0 N.

To learn more on  acceleration :

https://brainly.com/question/25876659

#SPJ11

the emotion that occurs more often to more drivers is

Answers

The emotion that occurs more often to more drivers is frustration.

What is frustration? Frustration is a feeling of dissatisfaction, displeasure, and discontent that arises as a result of an inability to fulfill a need or a goal. In driving, frustration is a common emotional state that occurs when a person is prevented from driving at their preferred pace, or when a person experiences unexpected events while driving, such as traffic jams or sudden accidents. Frustration may be caused by a variety of factors, including:

Driving conditions: Poor weather conditions or heavy traffic, for example, can be stressful and frustrating for drivers.Road rage: Aggressive driving, tailgating, and other reckless behavior on the road may contribute to frustration in other drivers.Inattention: Drivers who are distracted or preoccupied may become frustrated and irritated more easily, particularly when they encounter unexpected situations.Inconvenience: Road construction, detours, and other delays can cause frustration in drivers who are in a hurry to reach their destination.

Learn more about emotions: https://brainly.com/question/6450214

#SPJ11

Throw a Rock A person stands on the roof of a 22.73 m tall building and throws a rock with a speed of 32.45 m/s at an angle of exactly 31
0
above the horizontal. a. What are the vertical and horizontal components of the rock's acceleration while it is in the air? b. What are the vertical and horizontal components of the rock's speed at the beginning of its trajectory? c. What is the maximum height above the roof reached by the rock? d. What is the velocity of the rock just before it hits the ground? e. What is the horizontal distance from the base of the building to the point where the rock hits the ground.

Answers

The horizontal distance from the base of the building to the point where the rock hits the ground is 64.77 m.The horizontal component of initial velocity is  27.980 m/s. The Horizontal component of acceleration = 0 m/s².

a. The vertical component of acceleration = acceleration due to gravity = -9.81 m/s²

Horizontal component of acceleration = 0 m/s² (constant velocity)

b. Initial velocity = 32.45 m/s, angle of projection = 31º, Vertical component of initial velocity = 32.45,  sin 31º = 16.609 m/s.

Horizontal component of initial velocity = 32.45 cos 31º = 27.980 m/s

c. The maximum height reached by the rock can be determined using the equation:y = yo + voyt + (1/2)at² where y is the final displacement, yo is the initial displacement, voy is the initial velocity, a is the acceleration, t is the time.

The vertical distance travelled by the rock can be determined using the equation:

y = yo + voyt + (1/2)at²y = 22.73 m + 16.609 m/s * t + (1/2) * (-9.81 m/s²) * t².

At maximum height, the vertical velocity of the rock will be 0 m/s:0 = 16.609 m/s + (-9.81 m/s²) * t

d. The rock was thrown upwards, so we need to first determine the time taken by the rock to reach the ground.

The time can be determined using the equation:0 = 22.73 m + 16.609 m/s * t + (1/2) * (-9.81 m/s²) * t².

Solving for t, we get t = 2.3182 seconds. When the rock hits the ground, the final displacement will be 0 m, and the initial velocity will be the velocity just before the rock hits the ground.

The final velocity of the rock can be determined using the equation:v = voy + at where v is the final velocity, voy is the initial velocity, a is the acceleration, and t is the time taken by the rock to reach the ground.

The vertical velocity of the rock just before it hits the ground can be determined using the equation:v = voy + atv = 16.609 m/s + (-9.81 m/s²) * 2.3182 s = -2.709 m/s

e. The horizontal distance travelled by the rock can be determined using the equation:

x = xo + vox * tx = 0 + 27.980 m/s * 2.3182 sx = 64.77 m.

Therefore, the horizontal distance from the base of the building to the point where the rock hits the ground is 64.77 m.

Learn more about acceleration here ;

https://brainly.com/question/12550364

#SPJ11

which type of em waves has the greatest frequency?

Answers

The type of electromagnetic waves that has the greatest frequency is gamma rays.

What are electromagnetic waves? Electromagnetic waves are a type of wave that travels through space. Electromagnetic waves are produced when electrically charged particles accelerate. Electromagnetic waves do not require a medium, they can travel through a vacuum. In the electromagnetic spectrum, there are seven types of electromagnetic waves. The electromagnetic spectrum includes gamma rays, X-rays, ultraviolet radiation, visible light, infrared radiation, microwaves, and radio waves.

What are gamma rays? Gamma rays are the highest frequency type of electromagnetic radiation. Gamma rays have the smallest wavelength in the electromagnetic spectrum. Gamma rays have the highest energy of all the electromagnetic waves in the spectrum. Gamma rays are produced by the hottest and most energetic objects in the universe. Gamma rays are produced by nuclear fusion, nuclear fission, and by the annihilation of electrons with their antiparticles. Gamma rays can penetrate almost any material, including concrete and lead. Gamma rays are used in medicine to treat cancer and to sterilize medical equipment.

Learn more about electromagnetic waves here: https://brainly.com/question/13803241

#SPJ11

27. a) Draw the magnetic field around a wire given the current is flowing to the right of the page. b) Calculate the field strength of the magnetic field in the following situation. A straight current carrying wire has a 6.8 A current in a uniform magnetic field which is at right angles to the wire. When 0.15 m of wire is in the magnetic field it experiences a force of 0.55 N. Find the strength of the magnetic field.

Answers

a) The magnetic field around a wire carrying current can be represented using concentric circles centered on the wire. The direction of the magnetic field lines can be determined using the right-hand rule: if you wrap your right hand around the wire with your thumb pointing in the direction of the current, your curled fingers will indicate the direction of the magnetic field.

b) To calculate the strength of the magnetic field, we can use the equation:

Force = Magnetic field strength × Current × Length

Plugging in the given values, we have:

0.55 N = Magnetic field strength × 6.8 A × 0.15 m

Solving for the magnetic field strength, we find:

Magnetic field strength = 0.55 N / (6.8 A × 0.15 m)

Calculating the numerical value, we can determine the strength of the magnetic field.

To learn more about magnetic field, you can visit

brainly.com/question/28814129

#SPJ11.

A small rock is thrown straight up from the ground with initial speed v
0

. What is v
0

if the rock reaches a maximum height of 4.9 m above the ground? Neglect air resistance. (a) 4.9 m/s (b) 6.9 m/s (c) 9.8 m/s (d) 19.6 m/s (e) none of the above answers

Answers

The initial speed, v0, of the rock thrown straight up is approximately 9.8 m/s. The answer is option (c) in the given choices.

To determine the initial speed, v0, of the rock thrown straight up, we can use the principle of conservation of energy. At the maximum height, the rock's kinetic energy is zero, and all its initial energy is converted into potential energy.

The potential energy of the rock at its maximum height is given by the formula P.E. = m * g * h, where m is the mass of the rock, g is the acceleration due to gravity (approximately 9.8 m/s^2), and h is the maximum height (4.9 m).

Since the initial kinetic energy is converted entirely into potential energy at the maximum height, we can equate the two:

(1/2) * m * v0^2 = m * g * h

Simplifying the equation, we find:

(1/2) * v0^2 = g * h

Plugging in the values:

g = 9.8 m/s^2

h = 4.9 m

Solving for v0, we have:

(1/2) * v0^2 = 9.8 m/s^2 * 4.9 m

v0^2 = 2 * 9.8 m/s^2 * 4.9 m

v0^2 = 96.04 m^2/s^2

Taking the square root of both sides, we get:

v0 = √96.04 m/s

v0 ≈ 9.8 m/s

Therefore, the initial speed, v0, of the rock thrown straight up is approximately 9.8 m/s. The answer is option (c) in the given choices.

Learn more about principle of conservation of energy here:

https://brainly.com/question/16881881

#SPJ11








a An E guitar string has a typical tension of 72N. It has a length of 0.65m and a mass of 1.39. How fast are the waves traveling on the string? What are the frequencies of the first three harmonics?

Answers

The waves on the E guitar string are traveling at approximately 120.2 m/s. The frequencies of the first three harmonics on the E guitar string are approximately 39.1 Hz, 78.3 Hz, and 117.4 Hz, respectively.

To calculate the speed of the waves on the guitar string, we can use the formula v = √(T/μ), where v is the speed, T is the tension, and μ is the mass per unit length. In this case, T = 72 N and μ = m/L, where m is the mass of the string and L is its length.

Plugging in the given values,

we have μ = (1.39 g) / (0.65 m) = 2.138 g/m.

Converting the mass to kilograms, we get μ = 0.002138 kg/m. Substituting the values into the formula,

we find v = √(72 N / 0.002138 kg/m) ≈ 120.2 m/s.

Therefore, the waves on the E guitar string are traveling at approximately 120.2 m/s.

The frequencies of the harmonics on the guitar string can be calculated using the formula f = (n/2L) * v, where f is the frequency, n is the harmonic number, L is the length of the string, and v is the speed of the waves.

For the first harmonic (n = 1), we have f1 = (1/2)(0.65 m) * 120.2 m/s ≈ 39.1 Hz.

For the second harmonic (n = 2), we have f2 = (2/2)(0.65 m) * 120.2 m/s ≈ 78.3 Hz.

For the third harmonic (n = 3), we have f3 = (3/2)(0.65 m) * 120.2 m/s ≈ 117.4 Hz.

Therefore, the frequencies of the first three harmonics on the E guitar string are approximately 39.1 Hz, 78.3 Hz, and 117.4 Hz, respectively.

Learn more about wave here:

brainly.com/question/30783512

#SPJ11

Some important numbers you might use are: g (near the surface of the Earth): 9.8 N/kg G: 6.67×10

−11Nm

2/kg

2 Earth radius: 6.38×10

6 m Earth mass: 5.98×10

24 kg Sun mass: 1.99×10

30 kg QUESTION 5 A 267 kg satellite currently orbits the Earth in a circle at an orbital radius of 7.11×10

7 m. The satellite must be moved to a new circular orbit of radius 8.97×10

7 m. Calculate the additional mechanical energy needed. Assume a perfect conservation of mechanical energy.

Answers

The additional mechanical energy needed to move the satellite to the new circular orbit is approximately -3.365×10¹¹ J.

Calculating the additional mechanical energy needed

The mechanical energy of the satellite in its initial orbit is equal to its mechanical energy in the final orbit. The mechanical energy of a satellite in a circular orbit is given by the sum of its kinetic energy and gravitational potential energy.

The kinetic energy of the satellite is given by:

KE = (1/2)mv²

where m is the mass of the satellite and v is its velocity.

The gravitational potential energy of the satellite is given by:

PE = -G * (Me * m) / r

Since the satellite is moving in a circular orbit, its velocity can be calculated using the formula:

v = √(G * Me / r)

Calculating the initial kinetic energy and gravitational potential energy of the satellite in its initial orbit:

Initial orbital radius (r1) = 7.11×10⁷ m

Initial velocity (v1) = √(G * Me / r1)

Initial kinetic energy (KE1) = (1/2) * m * v1²

Initial gravitational potential energy (PE1) = -G * (Me * m) / r1

Calculating the final kinetic energy and gravitational potential energy of the satellite in its final orbit:

Final orbital radius (r2) = 8.97×10⁷ m

Final velocity (v2) = √(G * Me / r2)

Final kinetic energy (KE2) = (1/2) * m * v2²

Final gravitational potential energy (PE2) = -G * (Me * m) / r2

Additional mechanical energy = (KE2 + PE2) - (KE1 + PE1)

Given:

m = 267 kg

G = 6.67×10⁻¹¹ Nm²/kg²

Me = 5.98×10²⁴ kg

r1 = 7.11×10⁷ m

r2 = 8.97×10⁷ m

Calculations:

v1 = √(G * Me / r1)

KE1 = (1/2) * m * v1²

PE1 = -G * (Me * m) / r1

v2 = √(G * Me / r2)

KE2 = (1/2) * m * v2²

PE2 = -G * (Me * m) / r2

Additional mechanical energy = (KE2 + PE2) - (KE1 + PE1)

v1 = √((6.67×10⁻¹¹ Nm²/kg² * 5.98×10²⁴ kg) / (7.11×10⁷ m))

≈ 7679.58 m/s

KE1 = (1/2) * 267 kg * (7679.58 m/s)²

≈ 9.814×10⁹ J

PE1 = -(6.67×10⁻¹¹ Nm²/kg² * 5.98×10²⁴ kg) / (7.11×10⁷ m)

≈ -3.214×10¹¹ J

v2 = √((6.67×10⁻¹¹ Nm²/kg² * 5.98×10²⁴ kg) / (8.97×10⁷ m))

≈ 6921.84 m/s

KE2 = (1/2) * 267 kg * (6921.84 m/s)²

≈ 7.687×10⁹ J

PE2 = -(6.67×10⁻¹¹ Nm²/kg² * 5.98×10²⁴ kg) / (8.97×10⁷ m)

≈ -2.136×10¹¹ J

Additional mechanical energy = (7.687×10⁹ J - 2.136×10¹¹ J) - (9.814×10⁹ J - 3.214×10¹¹ J)

≈ -3.365×10¹¹ J

Learn more on kinetic energy here https://brainly.com/question/8101588

#SPJ1

Which of the following is a key difference between Newton's Law of Gravity and Einstein's equations of General Relativity? Select one: a Newton's Law of gravity does not yield accurate results for smaller bodies such as Pluto, the asteroids, and comets. b. Einstein's General Relativity insists that gravity is a force, whereas Newton's Law of Gravity does not c. Newton's Law of Gravity suggests that particles lacking mass (such as photons of light) will be unaffected by gravitational fields d. Einstein's General Relativity is only mathematical and theoretical in nature, and has not been supported by observational evidence.

Answers

The correct answer is: a. Newton's Law of gravity does not yield accurate results for smaller bodies such as Pluto, the asteroids, and comets.

Newton's Law of Gravity, formulated by Isaac Newton, is an approximation that works well for most everyday situations but fails to accurately describe the behavior of gravitational forces in extreme conditions or when dealing with very large masses or high velocities.

It does not account for the curvature of spacetime caused by mass and energy.

On the other hand, Einstein's equations of General Relativity, developed by Albert Einstein, provide a more comprehensive and accurate description of gravity.

General Relativity incorporates the concept of spacetime curvature, where mass and energy cause spacetime to bend, and objects move along geodesics determined by this curvature.

It successfully explains phenomena such as gravitational lensing, the precession of Mercury's orbit, and the bending of starlight around massive objects.

So, the key difference between Newton's Law of Gravity and Einstein's equations of General Relativity is that General Relativity provides a more accurate description of gravity in extreme conditions and for smaller bodies such as Pluto, the asteroids, and comets, where Newton's Law of Gravity fails to yield accurate results.

Learn more about gravity here:

https://brainly.com/question/31321801

#SPJ11


Given:
I=45C, t=0.5h, V=10V. Find resistance.

Answers

Given: I=45C, t=0.5h, V=10V. The resistance is 0.22Ω.

The relationship between resistance, voltage, and current can be defined by the formula R = V / I, the unit of resistance is the ohm (Ω). Here is how to solve the given problem:

Given I = 45 C, t = 0.5 h, V = 10 V.

As we know, R = V / I.

Putting the given values in the formula, R = 10 / 45 R = 2 / 9 R = 0.22 Ω.

The formula for resistance is R = V/I. Ohm's law states that the current flowing through a conductor between two points is directly proportional to the voltage across the two points, this relationship is represented mathematically as I = V/R, where I represents current, V represents voltage, and R represents resistance. In this case, the voltage is 10V, and the current is 45C over a time of 0.5 hours. Therefore, the resistance can be calculated by dividing the voltage by the current, which gives an answer of 0.22Ω

Learn more about Ohm's law at:

https://brainly.com/question/1247379

#SPJ11

(a) Young's double-slit experiment is performed with 595-nm light and a distance of 2.00 m between the slits and the screen. The tenth interference minimum is observed 7.55 mm from the central maximum. Determine the spacing of the slits (in mm). 1.497 mm (b) What If? What are the smallest and largest wavelengths of visible light that will also produce interference minima at this location? (Give your answers, in nm, to at least three significant figures. Assume the visible light spectrum ranges from 400 nm to 700 nm.) smallest wavelength 664,8 X nm largest wavelength nm Need Help? Read it Watch It

Answers

The spacing of the slits is approximately 1.497 mm. To determine the spacing of the slits in Young's double-slit experiment, we can use the formula:

d * sin(theta) = m * λ,

where d is the spacing of the slits, theta is the angle between the central maximum and the interference minimum, m is the order of the interference minimum, and λ is the wavelength of light.

In this case, the tenth interference minimum is observed, which corresponds to m = 10. The distance between the slits and the screen is given as 2.00 m, and the wavelength of light is 595 nm.

Using the given values, we can rearrange the formula to solve for d:

d = (m * λ) / sin(theta).

Since the interference minimum is observed, the angle theta can be approximated as theta = tan(theta) = y / L, where y is the distance of the interference minimum from the central maximum (7.55 mm) and L is the distance between the slits and the screen (2.00 m).

Plugging in the values, we have:

d = (10 * 595 nm) / sin(tan^(-1)(7.55 mm / 2.00 m)).

Evaluating the expression, we find that the spacing of the slits is approximately 1.497 mm.

To learn more about the Young's double-slit experiment , click here:-

brainly.com/question/33192818

#SPJ11

Two small, positively charged spheres have a combined charge of 12.0×10
−5
C. If each sphere is repelled from the other by an electrostatic force of 1.00 N when the spheres are 1.60 m apart, what is the charge on the sphere with the smaller charge? Number Units

Answers

The charge on the sphere with the smaller charge is 2.336 x 10⁻⁵ C (or) 0.00002336 C (approx). Two small, positively charged spheres have a combined charge of 12.0×10-5 C.

The electrostatic force(F) between two charges (q₁ and q₂) that are separated by a distance (r) is given by:F = kq₁q₂ / r²Here, k = Coulomb's constant = 9 x 10⁹ N m² C⁻²

Let, q₁ be the charge on the sphere with the smaller charge, so the charge on the other sphere is q₂ = (12.0×10-5 C - q₁)The distance between the spheres is r = 1.60 m.

The electrostatic force acting between the two spheres is F = 1.00 N.

According to Coulomb's law,

F = kq₁q₂ / r²⇒ 1 = 9 x 10⁹ × q₁ (12.0×10-5 - q₁) / (1.60)²⇒ 1 = 108 × 10⁻¹⁰ × q₁ (12.0 - 10⁵q₁) / 2.56×10⁻²⇒ 1 = 4.21875 × 10⁻⁸ × q₁ (12.0 - 10⁵q₁)⇒ 12.0q₁ - 10⁵q₁² = 23.68 × 10⁸q₁² - 3.125q₁ + 0.0000004⇒ 1 × 10⁵q₁² - 12.00002368 × 10⁸q₁ + 3.125 - 0.0000004 = 0.

On solving the above quadratic equation, we get, q₁ = 2.336 x 10⁻⁵ C (or) q₁ = 0.00002336 C

∴ The charge on the sphere with the smaller charge is 2.336 x 10⁻⁵ C (or) 0.00002336 C (approx).

Hence, the solution.

Learn more about electrostatic force here ;

https://brainly.com/question/31042490

#SPJ11

A domestic refrigerator operating as a closed system in steady state extracts the heat current Q₁ = 100 W from a cold space at the tempera- ture TL = 2°C. The room temperature is TH 20°C. The coefficient of performance of this refrigerator is 5. What is the minimum power that a refrigerator would require in order to extract ,? What is the actual power required by this refrigerator?

Answers

A domestic refrigerator is a closed system that operates in steady state to extract a heat current Q₁ = 100 W from a cold space at a temperature of TL = 2°C. The coefficient of performance of this refrigerator is 5 and the room temperature is TH 20°C.

This means that for every 1 kW of electricity used, the refrigerator can pump 5 kW of heat from the cold space to the hot space. Thus, the minimum power that a refrigerator would require in order to extract, Q₁/Q₂ is 1/5 or 20 W.

For the actual power required by this refrigerator, we need to determine the heat current Q₂ extracted from the hot space by the refrigerator.

Q₁/Q₂ = TH/(TH − TL)P/Q₁

= COP = TH/(TH − TL)TH

= Q₁/COP + TL

= 100/5 + 2

= 22°CQ₂

= P = Q₁/CO

P = 20 W

Thus, the actual power required by this refrigerator to extract heat current Q₂ = 20 W from the hot space to the cold space is 20 W.

Therefore, the minimum power that a refrigerator would require in order to extract is 20 W, and the actual power required by this refrigerator to extract is 20 W.

To know more about refrigerator visit :

https://brainly.com/question/33440251

#SPJ11

Two particles, with identical positive charges and a separation of 2.48×10^−2 m, are released from rest. Immediately after the release, particle 1 has an acceleration a 1 whose magnitude is 4.95×10 ^3 m/s ^2 , while particle 2 has an acceleration a 2 whose magnitude is 12.7×10 ^3 m/s ^2 . Particle 1 has a mass of 4.70×10 ^−6 kg. Find (a) the charge on each particle and (b) the mass of particle 2. (a) Number Units (b) Number Units

Answers

To determine the charge on each particle, the forces experienced by both particles are set equal to each other and solved for the charge. The mass of particle 2 is found by substituting the given values into the equation.

(a) To find the charge on each particle, we can use the equation F = qE, where F is the force, q is the charge, and E is the electric field. The force experienced by particle 1 is given by F1 = m1a1, where m1 is the mass of particle 1 and a1 is its acceleration.

Similarly, the force experienced by particle 2 is F2 = m2a2, where m2 is the mass of particle 2 and a2 is its acceleration. Since the charges on both particles are identical, we can set F1 = F2 and solve for the charge q.

F1 = qE = m1a1

F2 = qE = m2a2

Setting F1 = F2:

m1a1 = m2a2

Substituting the given values:

[tex](4.70×10^-6 kg)(4.95×10^3 m/s^2) = (m2)(12.7×10^3 m/s^2)[/tex]

Solving for m2:

[tex]m2 = (4.70×10^-6 kg)(4.95×10^3 m/s^2) / (12.7×10^3 m/s^2)[/tex]

(b) Substituting the given values and solving the equation, we can find the mass of particle 2.

[tex]m2 = (4.70×10^-6 kg)(4.95×10^3 m/s^2) / (12.7×10^3 m/s^2)[/tex]

Make sure to perform the calculations to obtain the numerical values in the desired units.

To know more about charge refer to-

https://brainly.com/question/13871705

#SPJ11

An air-core solenoid with 68 turns is 8.00 cm long and has a diameter 1.20 cm. When the current in wire is 0.770 A, ) what is the inductance of the solenoid? ) what is the energy stored in the inductor?

Answers

a) The inductance of the solenoid is approximately 0.0068 H.

b) The energy stored in the inductor is approximately 0.012 J.

a) The inductance (L) of an air-core solenoid can be calculated using the formula L = (μ₀n²A) / ℓ, where μ₀ is the permeability of free space (4π × 10⁻⁷ T·m/A), n is the number of turns, A is the cross-sectional area of the solenoid, and ℓ is the length of the solenoid.

To calculate the cross-sectional area, we need the diameter (d) of the solenoid. The formula for the cross-sectional area of a circle is A = (π/4)d². Given the diameter, we can calculate the cross-sectional area.

Using the given values of the number of turns, length, diameter, and the constants μ₀ and π, we can calculate the inductance of the solenoid.

b) The energy stored in an inductor (W) can be calculated using the formula W = (1/2)LI², where L is the inductance of the solenoid and I is the current flowing through the wire.

Using the calculated value of the inductance from part a and the given current, we can calculate the energy stored in the inductor.

To know more about inductance refer here:

https://brainly.com/question/31127300#

#SPJ11

In a laboratory test, simulated solar beam radiation strikes a window glazing specimen at incident angle = 45°. The surface area of the specimen is 2.5 m². The intensity of the beam radiation (measured in the direction of travel) is 990 W/m². The solar heat gain through the specimen is measured to be 375 W. The value SHGC for this test condition is closest to which of the following options? 0.1 0.2 0.3 0.4

Answers

The SHGC for this test condition is closest to 0.4.

The Solar Heat Gain Coefficient (SHGC) represents the fraction of solar radiation that enters a building through a specific glazing system and contributes to the overall heat gain. It is calculated as:

SHGC = (Total Solar Heat Gain) / (Incident Solar Radiation)

In this case, the incident solar radiation intensity is given as 990 W/m², and the solar heat gain through the specimen is measured to be 375 W.

SHGC = 375 W / 990 W = 0.379

Rounded to the nearest option provided, the closest value for SHGC is 0.4.

To learn more about test

https://brainly.com/question/31554134

#SPJ11

Eddie drives a toy car with a velocity of 1.5 m/s. The mass of the combination of Eddie and the toy car is 0.6 kg.
How much work would be required to stop the combination of eddie and the toy car?

Answers

The work required to stop the combination of Eddie and the toy car is 0.45 J.

Velocity is a vector quantity that defines the displacement of an object per unit time. It is expressed as meters per second (m/s).

The mass of the combination of Eddie and the toy car is 0.6 kg.

The formula for kinetic energy is as follows:

KE = (1/2)mv²

Where m = mass and v = velocity

KE = (1/2)(0.6)(1.5)²

KE = 0.675 J

Therefore, the kinetic energy of the combination of Eddie and the toy car is 0.675 J.

To bring an object to rest, work must be done against the object's motion. The work done is equivalent to the kinetic energy of the object because the energy is not destroyed but transformed into another type of energy.

The amount of work required to stop the combination of Eddie and the toy car is equal to the kinetic energy of the combination of Eddie and the toy car.

W = KE

W  = 0.675 J

W = 0.45 J

To learn more on kinetic energy :

https://brainly.com/question/25959744

#SPJ11

Quantum uncertainties are most predominant for simultaneously measuring the speed and location of

A) a baseball
B) a spitball.
C) an electron
D) none of the above

Answers

Answer: C) an electron

Two converging lenses are separated by 24.0 cm. The focal length of each lens is 13.0 cm. An object is placed 32.0 cm to the left of the lens that is on the left. Determine the final image distance relative to the lens on the right.

Answers

When two converging lenses are separated by some distance, we use the lens formula of each lens to find out the image distance of the first lens and then use that image distance as an object distance for the second lens.

For the first lens:

Given the object distance of the first lens, u1 = -32.0 cm.

The focal length of the first lens is f1 = 13.0 cm. The image distance, v1 can be calculated as:1/f1 = 1/v1 − 1/u1v1 = 8.97 cm

For the second lens:Given the object distance of the second lens, u2 = 15.03 cm (v1 = -8.97 cm).

The focal length of the second lens is f2 = 13.0 cm. The image distance, v2 can be calculated as:1/f2 = 1/v2 − 1/u2v2 = -19.37 cm

Final image distance relative to the lens on the right is -19.37 cm.

We take object distance and image distance as positive if they are measured from the object side to the lens and from the lens to the image side respectively.

However, if the image is formed behind the lens (or, on the object side), then the image distance should be negative.

To know more about distance visit:

https://brainly.com/question/13034462

#SPJ11


What assumptions are made about radio waves in relation to
mechanical waves such as sound?

Answers

The assumptions made about radio waves in relation to mechanical waves such as sound are that radio waves do not require a medium to propagate, while sound waves do. Additionally, radio waves travel at the speed of light in a vacuum, whereas sound waves travel at a much slower speed through a medium.

Radio waves and sound waves are both forms of wave propagation, but they exhibit different characteristics due to their nature.

One of the key assumptions made about radio waves is that they are electromagnetic waves, which means they can travel through a vacuum or empty space. Unlike sound waves, which require a medium such as air, water, or solids to propagate, radio waves can travel through the vacuum of outer space. This is because radio waves are a form of electromagnetic radiation, and they do not rely on the vibration of particles in a medium to transmit energy.

Another important assumption is that radio waves travel at the speed of light in a vacuum, approximately 3.00 x 10^8 meters per second. This speed is much faster than the speed of sound, which is around 343 meters per second in air at room temperature. The high speed of radio waves allows them to cover large distances in a short amount of time, enabling long-range communication and broadcasting.

In contrast, sound waves are mechanical waves that require a medium to travel through. They propagate through the compression and rarefaction of particles in the medium, such as air molecules. Sound waves cannot travel through a vacuum because there are no particles to transmit the mechanical vibrations. The speed of sound varies depending on the properties of the medium, such as temperature and density. In general, sound waves travel much slower than radio waves.

In summary, the assumptions made about radio waves in relation to mechanical waves such as sound are that radio waves do not require a medium for propagation and travel at the speed of light, while sound waves require a medium and travel at a much slower speed. These assumptions highlight the fundamental differences between electromagnetic waves, like radio waves, and mechanical waves, like sound waves.

To know more about radio waves click here:

https://brainly.com/question/28874040

#SPJ11

a highly elastic ball is dropped from a height of 2.0m onto a hard surface. assume that the collision is elastic and no energy is lost to air friction.

a). show that the ball's motion after it hits the surface is periodic

b). determine the period of the motion

c). is it simple harmonic motion why or why not?

Answers

The ball's motion after it hits the surface is periodic because it undergoes repeated cycles of motion. The period of the motion is approximately 1.28 seconds.  No, it is not simple harmonic motion.

a) The ball's motion after it hits the surface is periodic because it undergoes repeated cycles of motion. After the ball hits the hard surface, it bounces back up due to the elastic collision, reaches a maximum height, and then falls back down again. This cycle of motion repeats itself as long as the ball continues to bounce.

b) To determine the period of the motion, we need to calculate the time it takes for the ball to complete one full cycle.

The time taken for the ball to reach its maximum height after bouncing can be calculated using the equation:

h = (1/2) * g * t^2

where h is the initial height (2.0 m), g is the acceleration due to gravity (approximately 9.8 m/s^2), and t is the time taken.

Solving for t, we get:

t = sqrt((2 * h) / g)

Substituting the values, we find:

t = sqrt((2 * 2.0 m) / (9.8 m/s^2))

t ≈ 0.64 seconds

Since the ball completes one full cycle in both the upward and downward motion, the period of the motion is twice the time taken to reach the maximum height:

Period = 2 * t ≈ 2 * 0.64 s ≈ 1.28 seconds

Therefore, the period of the motion is approximately 1.28 seconds.

c) No, it is not simple harmonic motion. Simple harmonic motion occurs when the restoring force acting on the object is directly proportional to the displacement from the equilibrium position and always directed towards the equilibrium position. In the case of the bouncing ball, the restoring force is not directly proportional to the displacement and is not always directed toward the equilibrium position. The ball experiences a change in direction and its acceleration is not constant during its motion. Therefore, the motion of the ball after it hits the surface is not simple harmonic motion.

To learn more about simple harmonic motion click here

https://brainly.com/question/30404816

#SPJ11

(b) What if? If the thickness of the slab is (1.1±0.2)00, what is the volume of the slab and the uncertainty in this volume? (Give your answers in cm i.)

Answers

The volume of the slab is 2475 ± 450 cm³. The thickness of the slab is (1.1±0.2)00. We have to find the volume of the slab and the uncertainty in this volume.

Let the length of the slab be l, width be w, and thickness be t. Hence, the Volume of the slab = l × w × t.

The thickness of the slab = (1.1 ± 0.2)00= 1.1 × 100 ± 0.2 × 100 = (110 ± 20) cm.

As we know, the formula for finding the volume of the slab is given by V = l × w × t.

Substitute the given values Volume of the slab = l × w × t= l × w × (110 ± 20).

The volume of the slab is V = l × w × (110 ± 20).

Therefore, the volume of the slab is given by V = 110lw ± 20lw.

The uncertainty in volume is 20lw.

Let us substitute the given values of l and w to find the volume and uncertainty in the volume of the slab.

Given l = 5.00 cm and w = 4.50 cm.

Volume of the slab = 110lw ± 20lw= 110 × 5.00 × 4.50 ± 20 × 5.00 × 4.50= 2475 ± 450 cm³.

Therefore, the volume of the slab is 2475 ± 450 cm³.

Learn more about uncertainty here ;

https://brainly.com/question/15103386

#SPJ11

A disk with a rotational inertia of 2.04kg * m ^ 2 rotates like a merry-go-round while undergoing a torque given by tau = (1.15 + 5.79t) * Nm At time t = 1s its angular momentum is 7.73 kg.m^ 2 /s What is its angular momentum at t = 3s ?

Answers

The angular momentum (L) of a rotating object is determined by its moment of inertia (I) and angular velocity (w). At time t = 1s, the angular momentum of the disk was given as 7.73 kg.m²/s. We can use the formula L = Iw to calculate the angular momentum of the disk at time t = 3s.

At time t = 1s:

Angular momentum, L = Iω = 7.73 kg.m²/s

We can find the angular velocity (ω) at time t = 1s by rearranging the formula:

ω = L/I = 7.73/2.04 = 3.7892 rad/s

Now, at time t = 3s, the torque (τ) given is:

τ = (1.15 + 5.79t) Nm = (1.15 + 5.79(3)) Nm = 18.92 Nm

We can calculate the angular acceleration (α) of the disk using the formula:

τ = Iα

α = τ/I = 18.92/2.04 = 9.2745 rad/s²

To find the final angular velocity (ω₁) at t = 3s, we use the formula:

ω₁ = ω₀ + αt

ω₁ = 3.7892 + 9.2745(3) = 31.8127 rad/s

Finally, the angular momentum (L₁) at time t = 3s is given by:

L₁ = Iω₁ = 2.04(31.8127) = 64.8303 kg.m²/s

Therefore, the angular momentum of the disk at time t = 3s is 64.8303 kg.m²/s.

To know more about momentum visit:

https://brainly.com/question/30677308

#SPJ11

If a star gives off radiation at 537 nm, what is its
temperature?
Round your answer to 1 decimal place please, thanks!

Answers

If a star gives off radiation at 537 nm, the temperature of the star is approximately 5398.5 Kelvin.

To determine the temperature of a star based on its radiation wavelength, we can use Wien's displacement law.

Wien's displacement law states that the wavelength of maximum intensity (λmax) of radiation emitted by a black body is inversely proportional to its temperature (T).

The formula for Wien's displacement law is:

λmax = b / T

where:

λmax is the wavelength of maximum intensity,

b is Wien's displacement constant (approximately 2.898 × 10^(-3) meters kelvin), and

T is the temperature in Kelvin.

To calculate the temperature, we rearrange the equation:

T = b / λmax

Given that the star emits radiation at a wavelength of 537 nm, we convert it to meters:

λmax = 537 nm = 537 × 10^(-9) meters

Now we can substitute the values into the equation:

T = (2.898 × 10^(-3) meters kelvin) / (537 × 10^(-9) meters)

Simplifying the expression:

T = (2.898 × 10^(-3)) / (537 × 10^(-9)) kelvin

T = (2.898 / 537) × 10^(-3 - (-9)) kelvin

T = (2.898 / 537) × 10^6 kelvin

T ≈ 5398.5 kelvin

Rounding to 1 decimal place, the temperature of the star is approximately 5398.5 Kelvin.

To learn more about Wien's displacement law visit: https://brainly.com/question/31780394

#SPJ11

Asteroid A has 2.5 times the mass and 4.5 times the velocity of Asteroid B. If Asteroid B has a kinetic energy of 4,300,000 J then what is the kinetic energy of Asteroid A?

Answers

The kinetic energy of Asteroid A can be determined by considering its mass and velocity in relation to Asteroid B. Hence, the kinetic energy of Asteroid A is approximately 389,025,000 J.

Let's denote the mass of Asteroid B as mB and its velocity as vB. The kinetic energy of Asteroid B is given as 4,300,000 J. Now, if Asteroid A has 2.5 times the mass and 4.5 times the velocity of Asteroid B, we can express the mass of Asteroid A as mA = 2.5mB and its velocity as vA = 4.5vB.

The formula for kinetic energy is given by KE = 0.5 * mass * velocity^2. Substituting the values for Asteroid A, the kinetic energy of Asteroid A can be calculated as follows:

KEA = 0.5 * mA * vA^2

   = 0.5 * (2.5mB) * (4.5vB)^2

   = 0.5 * 2.5 * 4.5^2 * mB * vB^2

   = 20.25 * 4.5 * 4,300,000 J

   ≈ 389,025,000 J

Therefore, the kinetic energy of Asteroid A is approximately 389,025,000 J.

To know more about kinetic energy click here:

https://brainly.com/question/72216

#SPJ11

A diffraction grating has 450 lines per millimeter. What is the highest order m that contains the entire visible spectrum from 400 nm to 700 nm? Om-2 Om-4 Om-6 Om-5 m-31 Question 17 0.1 pts plation to the ction A

Answers

The highest order (m) that contains the entire visible spectrum from 400 nm to 700 nm is approximately 0.55.

To determine the highest order (m) that contains the entire visible spectrum, we can use the formula for the maximum order of diffraction:

m_max = d/λ

where:

m_max is the maximum order of diffraction,

d is the spacing between the lines on the diffraction grating, and

λ is the wavelength of light.

In this case, the spacing between the lines on the diffraction grating can be calculated as the reciprocal of the number of lines per unit length:

d = 1 / (450 lines/mm) = 1 / (450 x 10^3 lines/m)

Now we can substitute the values into the formula to find the highest order (m) that contains the entire visible spectrum:

m_max = (1 / (450 x 10^3 lines/m)) / (400 x 10^-9 m) = 1 / (450 x 10^3 x 400 x 10^-9)

Simplifying the expression:

m_max = 1 / (180 x 10^-2) = 1 / 1.8 = 0.55

Therefore, the highest order (m) that contains the entire visible spectrum from 400 nm to 700 nm is approximately 0.55.

To learn more about spectrum, click here: https://brainly.com/question/32934285

#SPJ11

A uniform bar of mass m and length is pivoted at point , as shown in Figure 2 below. A point mass is attached to the bar at a distance from point .
Part I. The bar is released from rest from the position shown. Immediately after the release:
(a) Draw the free-body-diagram showing all the forces acting on the bar.
(b) Obtain an expression for the angular acceleration of the bar in terms of m, , , , , and theta ( is the acceleration due to gravity) in the fixed frame (in terms of ⃗3 unit vectorr).
(c) Find the magnitude of for which the angular acceleration maximises. Briefly explain the reasoning for your choice
Part II. Now assume that the bar has an angular velocity ⃗3 when passing through the position shown in Figure 2. For this system:
(d) Does the angular acceleration of the bar change from the expression obtained in Part I(b)? Explain why.
(e) How do the magnitudes of the reaction forces at change compared to Part I? You do not need to obtain expressions for the forces; discuss whether each force is larger or smaller compared to that of the system of Part I and explain why.

Answers

Part I
a) The free-body diagram showing all the forces acting on the bar is given below:b) The expression for the angular acceleration of the bar in terms of m, l, a, g, m1, and θ (a is the acceleration due to gravity) in the fixed frame R3 is as follows:

Taking torque about point O, we have

Iα = τ

Here, τ is the torque and I is the moment of inertia of the rod and the mass about the pivot point O.

Here we consider the mass of the rod to be uniformly distributed.

So, we can write I = (1/3)ml² + m1l²Now, the torque τ due to the gravitational force acting on the mass m1 isτ = m1g(l - a/2)sinθSimilarly, the torque due to the gravitational force acting on the rod isτ = - (mg/2)(l/2)sinθThese two torques act in opposite directions, so the net torque acting on the system isτ = m1g(l - a/2)sinθ - (mg/2)(l/2)sinθ

Solving for the angular acceleration α, we get

α = [m1g(l - a/2) - (mg/2)(l/2)]sinθ/[ml²/3 + m1l²]

c) The maximum value of angular acceleration occurs when m1 is at the end of the rod. When m1 is at the end of the rod, the moment of inertia of the system is maximum and so the angular acceleration is maximum. Hence, the magnitude of m1 that maximises angular acceleration is m1 = m/2.

Part II
The magnitudes of both these reaction forces at point O decrease. This is because of the centrifugal force acting on the mass m1, which reduces the force required by the rod to balance the gravitational force acting on it. Hence, both the perpendicular and parallel reaction forces at point O decrease in magnitude when the bar has an initial angular velocity ω3.

To know more about acceleration visit :

https://brainly.com/question/2303856

#SPJ11

Other Questions
There are two identical, positively charged conducting spheres fixed in space. The spheres are 31.8 cm apart (center to center) and repel each other with an electrostatic force of 1=0.0630 N . A thin conducting wire connects the spheres, redistributing the charge on each sphere. When the wire is removed, the spheres still repel, but with a force of 2=0.115 N . The Coulomb force constant is =1/(40)=8.99109 Nm2/C2 .Using this information, find the initial charge on each sphere, 1q1 and 2q2, if 1q1 is initially less than 2q2 . Write the standard form of the equation of the circle with the given characteristics.Center: (4, 8); Solution point: (-1,20) Consider a firm producing vaccinations using labour L and capital K. The price of labour is w and the price of capital is r. Assume production technology is given by y=AL^K^, where A represents the state of technology and ,>0. Show the cost minimising combinations of L and K needed to produce 10 million and 20 million vaccinations on a graph, with K on the vertical axis and L on the horizontal axis. Stating your assumptions provide a sketch of the curve depicting the total cost function. Draw the associated marginal and average cost curves on a separate graph. Suppose the price of labour rises, what happens to the cost minimising combinations of L and K required to produce 10 million vaccinations? Clearly, illustrate your answer on your graphs to parts (a) and (b). Suppose instead that r and w rise in the same proportion. What happens to the cost-minimising combinations required to produce 10 million vaccinations? Illustrate the effect of the change in input prices on your graph of the total cost function in part (b). A student borrows $85,000 for business school at 6.0% stated annual interest with monthly repayment over 10 years. Consider this as a loan with no payments or interest during school so that the problem structure is equivalent to a standard loan received one period before the first payment. Suppose that to better match expected student salary growth over time, the loan is structured as a growing annuity with each monthly payment growing by 0.2% compared to the previous monthly payment. How much is the first monthly payment? what is the approximate latitude and longitude of mecca, saudi arabia? A student was asked to solve the following question:Evaluate cos(arcsin(1/4)) They gave the following answer: cos(15/4)) Is this correct? Is this "almost" correct? How should the answer be written and what is the difference between this student's answer and the correct answer? Increasing returns to scale or declining average cost cause market failure becauseA. there is a tendency for such markets to become monopolized.B. one firm makes infinite profit.Cmarginal rates of transformation tend toward zero.(D there is no such thing as a big enough firm. In order to buy an apartment unit, Meryl needs to spend a total of $350,000 today and equal monthly payments of $2500 for the next 27 years. How much should the apartment be worth at the end of this time period for this to be a profitable investment? Assume an annual interest rate of 8% compounded monthly.a. $5,866,672b. $6,797,824c. $5,777,824d. $4,777,672 Show that the last digit of positive powers of a number repeats itself every other 4 powers. Example: List the last digit of powers of 3 starting from 1. You will see they are 3,9,7,1,3,9,7,1,3,9,7,1, Hint: Start by showing n 5 n(mod10) FILL THE BLANK.although not nearly as powerful as supercomputers, blank______ are capable of great processing speeds and data storage. What is the width of the loss cone (in degrees) at a radius of \( 25,000 \mathrm{~km} \) ? PLS HELP METhe function f(x) = -3(2)+ +90 represents the number of tokens a child has x hours after arriving at an arcade.What is the practical domain and range of the function?Enter your answer by filling in the boxes to correctly complete the statements. If necessary, round to the nearest hundreaThe practical domain of the situation is xBasicThe practical range of the situation is 90AO Discuss which type of reasoning is dominant in both the experimental sciences and in the historical sciences and explain why. This answer requires a bit of explanation.a. Explain how the experimental sciences and the historical sciences overlap. In other words, explain one has to do with the other and how do they help each other out.b. briefly explain the methodological differences between the experimental sciences and the historical sciences. What is probably the most acerbic and consistent criticism of the historical sciences?c. Explain the "hoary problem" of induction and how scientists have attempted to overcome this problem.d. Please just give simple answers for these, I don't need the whole history, just help with the answers. for a self-sufficient producer the consumption possibilities frontier A pipe closed at one end is 0.34 m long. What are the threelowest harmonics possible in the pipe? ANS: 250 Hz, 750Hz, 1250 Hz If an investor purchased the above bond with an intended holdingperiod of 2 years, would that investor rather interest ratesincrease or decrease? Why? Find the area of the largest rectangle with one corner at the origin, the opposite corner in the first quadrant on the graph of the parabolaf(x)=13447x^2, and sides parallel to the axes. The maximum possible area is:________ a gradual degenerative condition affecting the underside of the patella is called: Examples of defined benefit plans include 401(k) plans, 403(b)plans, employee stock ownership plans, and profit-sharingplans.TrueFalse" A firm is said to have "market power" only when a. it is one of 25 or fewer firms in the industry. b. it has the ability to choose its own profit-maximizing level of output. c. its demand curve is the market demand curve. d. it is one of 10 or fewer firms in the industry. e. it has the ability to influence the price of its product.