Eddie drives a toy car with a velocity of 1.5 m/s. The mass of the combination of Eddie and the toy car is 0.6 kg.
How much work would be required to stop the combination of eddie and the toy car?

Answers

Answer 1

The work required to stop the combination of Eddie and the toy car is 0.45 J.

Velocity is a vector quantity that defines the displacement of an object per unit time. It is expressed as meters per second (m/s).

The mass of the combination of Eddie and the toy car is 0.6 kg.

The formula for kinetic energy is as follows:

KE = (1/2)mv²

Where m = mass and v = velocity

KE = (1/2)(0.6)(1.5)²

KE = 0.675 J

Therefore, the kinetic energy of the combination of Eddie and the toy car is 0.675 J.

To bring an object to rest, work must be done against the object's motion. The work done is equivalent to the kinetic energy of the object because the energy is not destroyed but transformed into another type of energy.

The amount of work required to stop the combination of Eddie and the toy car is equal to the kinetic energy of the combination of Eddie and the toy car.

W = KE

W  = 0.675 J

W = 0.45 J

To learn more on kinetic energy :

https://brainly.com/question/25959744

#SPJ11


Related Questions


Q) What will be the Nature of the Diffraction Pattern if we
replace a Laser with a Light Bulb?

Answers

The diffraction pattern formed by a light bulb will be less defined and less structured compared to that of a laser. If a laser is replaced with a light bulb, the nature of the diffraction pattern will change. Instead of producing a coherent and focused beam of light, a light bulb emits incoherent and divergent light.

A laser produces a highly coherent and monochromatic beam of light, which means that the light waves emitted from a laser are in phase and have a single wavelength. This coherence allows the laser beam to form a well-defined and focused diffraction pattern. The interference of the coherent waves produces sharp fringes and a clear pattern.

On the other hand, a light bulb emits light waves that are not coherent and have a wide range of wavelengths. The waves emitted from different parts of the light bulb are out of phase and do not have a consistent phase relationship. This lack of coherence results in a diffraction pattern that is less organized and less distinct. The interference of incoherent waves leads to a blurred pattern with less pronounced fringes.

Therefore, if a laser is replaced with a light bulb, the diffraction pattern will lose its coherence and sharpness, resulting in a less defined and less structured pattern.

learn more about diffraction pattern here:

https://brainly.com/question/12290582

#SPJ11


Water flows through a 2.5-cm-diameter pipe at 1.8 m/s. If the
pipe narrows to 2.0-cm diameter, what is the flow speed (in m/s) in
the constriction?

Answers

If the pipe narrows to 2.0-cm diameter, the flow speed in the constriction is approximately 5.28 cm/s.

For finding low speed in the constriction, apply the principle of continuity, which states that the mass flow rate of an incompressible fluid remains constant in a closed system. Since the mass flow rate is constant, the product of the cross-sectional area and the flow speed at any point in the system should remain the same.

Initially, the water flows through a pipe with a diameter of 2.5cm. Calculate the cross-sectional area of this pipe using the formula:

[tex]A = \pi r^2[/tex]

where r is the radius (half the diameter). Thus, the initial cross-sectional area is:

[tex]A_1 = \pi (2.5/2)^2 = 4.91 cm^2[/tex]

Given that the initial flow speed is 1.9m/s, can find the initial volume flow rate using the formula

[tex]Q_1 = A_1v_1[/tex]

where [tex]Q_1[/tex] is the initial volume flow rate.

Plugging in the values,

[tex]Q_1 = 4.91 cm^2 * 1.9m/s = 9.34 cm^3/s.[/tex]

When the water enters the constriction with a diameter of 1.5cm, we can calculate the cross-sectional area of the constriction using the same formula. Thus, the constriction's cross-sectional area is

[tex]A_2 = \pi (1.5/2)^2 = 1.77 cm^2[/tex]

For finding the flow speed in the constriction, rearrange the formula as

[tex]v_2 = Q_2/A_2[/tex],

where [tex]v_2[/tex] is the flow speed in the constriction, and [tex]Q_2[/tex] is the volume flow rate in the constriction.

Plugging in the known values,

[tex]v_2 = 9.34 cm^3/s / 1.77 cm^2 = 5.28 cm/s[/tex]

Therefore, the flow speed in the constriction is approximately 5.28 cm/s.

Learn more about mass flow rate here:

https://brainly.com/question/30763861

#SPJ11

The phase difference between two identical sinusoidal waves propagating in the same direction is tt rad. If these two waves are interfering, what would be the nature of their interference? Operfectly destructive O partially constructive partially destructive O None of the listed choices. perfectly constructive

Answers

The phase difference between two identical sinusoidal waves propagating in the same direction is tt rad (where tt represents a specific angle in radians).

The nature of interference between these waves depends on the specific value of the phase difference. If the phase difference is an odd multiple of π (pi) radians (such as π, 3π, 5π, etc.), the interference is perfectly destructive. In this case, the peaks of one wave coincide with the troughs of the other wave, resulting in complete cancellation or destructive interference.

If the phase difference is an even multiple of π (pi) radians (such as 0, 2π, 4π, etc.), the interference is perfectly constructive. In this case, the peaks of one wave coincide with the peaks of the other wave, resulting in reinforcement or constructive interference. If the phase difference is any other value, the interference will be a combination of constructive and destructive interference, leading to partially constructive and partially destructive interference.

Therefore, the correct answer from the listed choices would be: Partially constructive, partially destructive.

To learn more about  sinusoidal waves follow:

https://brainly.com/question/33443431

#SPJ11

A series of polarizers are each placed at a 18 ∘ interval from the previous polarizer. Unpolarized light is incident on this series of polarizers.

How many polarizers does the light have to go through before it is 19 of its original intensity?

Answers

The light needs to go through at least 7 polarizers before its intensity reaches 1/19th of its original intensity.

When unpolarized light passes through a polarizer, the intensity of the light is reduced by a factor of 1/2. Each subsequent polarizer further reduces the intensity by the same factor.

To find the number of polarizers required for the light to reach 1/19th of its original intensity, we need to determine how many times we need to reduce the intensity by a factor of 1/2.

Let's denote the number of polarizers as N. For each polarizer, the intensity is reduced by a factor of 1/2. So, the equation representing the reduction in intensity is:

(1/2)^N = 1/19

To solve for N, we can take the logarithm of both sides:

log((1/2)^N) = log(1/19)

N * log(1/2) = log(1/19)

N = log(1/19) / log(1/2)

Using a calculator, we can evaluate this expression:

N ≈ 6.91

Since we cannot have a fraction of a polarizer, we round up to the nearest whole number.

Therefore, the light needs to go through at least 7 polarizers before its intensity reaches 1/19th of its original intensity.

Learn more about polarizers from the given link

https://brainly.com/question/29217577

#SPJ11

If a 221.7-kg weight attached to a paddle wheel in oil falls from rest to 3.000 m/s and the work of the falling weight is transferred to the water [use water's specific heat =4182 J/(kgK) ] with nearly no loss to other forms of energy, how many kelvin of temperature does the work done by the fall raise 1.5 kg of water?

Answers

The work done by the fall raises the temperature of 1.5 kg of water by approximately 0.15 K.

To determine the temperature increase caused by the work done by the falling weight on the water, we need to calculate the amount of thermal energy transferred to the water. The thermal energy transferred can be calculated using the equation:

Q = mcΔT

where Q is the thermal energy transferred, m is the mass of water, c is the specific heat capacity of water, and ΔT is the temperature change.

Given:

Mass of water (m) = 1.5 kg

Specific heat capacity of water (c) = 4182 J/(kg·K)

To calculate the thermal energy transferred, we need to determine the work done by the falling weight. The work done is given by the equation:

W = ΔKE

where W is the work done, and ΔKE is the change in kinetic energy of the weight.

The change in kinetic energy can be calculated using the equation:

ΔKE = 0.5m[tex]v^{2}[/tex]

where m is the mass of the weight and v is its velocity.

Given:

Mass of weight (m) = 221.7 kg

Initial velocity (v₁) = 0 m/s

Final velocity (v₂) = 3.000 m/s

Calculating the change in kinetic energy:

ΔKE = 0.5 * 221.7 kg * (3.000 m/[tex]s^{2}[/tex])

Calculating the result:

ΔKE = 997.65 J

Now, we can calculate the thermal energy transferred to the water:

Q = mcΔT

Rearranging the equation to solve for ΔT:

ΔT = Q / (mc)

Substituting the known values:

ΔT = 997.65 J / (1.5 kg * 4182 J/(kg·K))

Calculating the result:

ΔT ≈ 0.15 K

Therefore, the work done by the fall raises the temperature of 1.5 kg of water by approximately 0.15 K.

Learn more about thermal energy here:

https://brainly.com/question/11278589

#SPJ11

what is the fractional decrease in amplitude per cycle?

Answers

Fractional decrease in amplitude per cycle is the percentage decrease of amplitude per cycle.

What is amplitude?The amplitude of a wave refers to the maximum displacement of a point on a wave from its resting position. In other words, it is the height of a wave, or how far it deviates from its undisturbed position.What is fractional decrease?The fractional decrease of a wave's amplitude is the percentage decrease in amplitude from the original value. It is also known as the damping ratio and is denoted by ζ. The formula for calculating the fractional decrease in amplitude per cycle is as follows:

                                                                            ζ= (a - b) / a,

Where a is the initial amplitude and b is the amplitude after a cycle.

For example, if a wave has an initial amplitude of 10 cm and a final amplitude of 8 cm after one cycle, then the fractional decrease in amplitude is:ζ= (10 - 8) / 10= 0.2 or 20%Therefore, the fractional decrease in amplitude per cycle is 20%.

#SPJ11

learn more related to "fractional decrease in amplitude per cycle"https://brainly.com/question/17070403








X Incorrect; Try Again; 3 attempts remaining Part 8 What is the capactance? Express your answer in farads.

Answers

Capacitance is a property of a capacitor and represents its ability to store electrical charge. It is denoted by the symbol C and is measured in farads (F).

The capacitance of a capacitor is determined by its physical characteristics, such as the size, shape, and materials used. It can be calculated using the equation:

C = Q / V

C =  capacitance in farads,

Q = charge stored in the capacitor in coulombs,

V = voltage across the capacitor in volts.

In practical terms, capacitance describes the amount of charge that a capacitor can store per unit voltage. A capacitor with a higher capacitance can store more charge for a given voltage, while a capacitor with a lower capacitance can store less charge.

The farad (F) is a relatively large unit of capacitance, and in many cases, capacitors are commonly measured in smaller units such as microfarads (μF), nanofarads (nF), or picofarads (pF), which are equivalent to 10⁻⁶ F, 10⁻⁹ F, and 10⁻¹² F, respectively.

Thus, a capacitor's capacitance reflects its capacity to hold an electrical charge. It is measured in farads (F) and has the sign C.

To know more about Capacitance, click here:

https://brainly.com/question/31871398

#SPJ4

Complete question:

What is the capacitance?

Express your answer in farads.

The absolute pressure of an ideal gas in a bike tire is 1.5 atm Atre gauge is used to measare thim pressure in the tie What prestulf does hie gaine read A. 2.5 atm B. 5 atm 1.5 atm 3 atm E 0.5 atm

Answers

The pressure reading on the gauge would be 2.5 atm calculated by subtracting the atmospheric pressure from the absolute pressure. So, the correct answer is option A. 2.5 atm.

Explanation:

Gauge pressure is the pressure measured relative to atmospheric pressure. In this case, the absolute pressure inside the bike tire is given as 1.5 atm. Since the atmospheric pressure is typically around 1 atm, the gauge pressure can be calculated by subtracting the atmospheric pressure from the absolute pressure.

Absolute pressure = Gauge pressure + Atmospheric pressure

Absolute pressure = 1.5 atm + 1 atm

Absolute pressure = 2.5 atm

Therefore, the pressure reading on the gauge would be 2.5 atm.

So, the correct answer is option A. 2.5 atm.

Learn more about pressure

https://brainly.com/question/28012687

#SPJ11

A small block with mass 0.500 kg sits on a horizontal frictionless surface. If the block is initially at rest, what constant horizontal force must be applied to the block for it to move 6.00 m in 2.00 s ? (a) 0.25 N (b) 0.50 N (c) 0.75 N (d) 1.0 N (e) 1.5 N (f) none of these answers

Answers

The constant horizontal force required to move the block 6.00 m in 2.00 s is 0.75 N. The answer is option (c) in the given choices.

To determine the constant horizontal force required to move the block, we can use Newton's second law of motion, which states that the force acting on an object is equal to the mass of the object multiplied by its acceleration.

Given:

Mass of the block (m) = 0.500 kg

Distance traveled (d) = 6.00 m

Time taken (t) = 2.00 s

The formula for acceleration is:

acceleration (a) = (change in velocity) / time

Since the block starts from rest, the change in velocity is equal to the final velocity. Using the equation:

distance (d) = (initial velocity) * (time) + (1/2) * (acceleration) * (time)^2

Plugging in the values:

6.00 m = 0 * 2.00 s + (1/2) * (acceleration) * (2.00 s)^2

Rearranging the equation and solving for acceleration:

acceleration = (2 * 6.00 m) / (2.00 s)^2

acceleration = 6.00 m / 4.00 s^2

acceleration = 1.50 m/s^2

Now we can use Newton's second law to find the force:

force (F) = mass (m) * acceleration (a)

force (F) = 0.500 kg * 1.50 m/s^2

force (F) = 0.75 N

Therefore, the constant horizontal force required to move the block 6.00 m in 2.00 s is 0.75 N. The answer is option (c) in the given choices.

Learn more about force here:

https://brainly.com/question/13191643

#SPJ11

dancer moves in one dimension back and forth across the stage. If the end of the stage nearest to her is considered to be the origin of an x axis that uns parallel to the stage, her position, as a function of time, is given by
x
(t)=[(0.02 m/s
3
)t
3
−(0.36 m/s
2
)t
2
+(1.98 m/s)t−2.16 m
i
^
(a) Find an expression for the dancer's velocity as a function of time. (Assume SI units. Do not include units in your answer. Use the following necessary: t.)
v
(t)=
i
^
(b) Graph the velocity as a function of time for the 14 s over which the dancer performs (the dancer begins when t=0 ) and use the graph to determine when the dancer's velocity is equal to 0 m/s. (Submit a file with a maximum size of 1MB.) No file chosen

Answers

Velocity is the derivative of displacement in calculus.

The velocity of the dancer is given by:v (t) = dx/dt Differentiating the given displacement function with respect to time (t),

we get:[tex]v (t) = [(0.02 m/s^3) * 3t^2 - (0.36 m/s^2) * 2t + 1.98 m/s] * i^ = (0.06t^2 - 0.72t + 1.98) * i^(b)[/tex]

To plot the graph of velocity as a function of time for the 14 s, we can use the obtained expression of velocity.

The graph of velocity versus time is shown below:

The velocity of the dancer is equal to 0 [tex]m/s at t = 1.2 s and t = 5.6 s[/tex]approximately.

To know more about displacement visit:

https://brainly.com/question/11934397

#SPJ11

(c) Poisson's ratio v describes how much a rod will become thinner as it is stretched out, and can take values between O and ½. Use these two values to show that torsional waves in a circular rod can travel between about 58% and 71% of the speed of a longitudinal wave along a thin rod of the same material, depending on the value of Poisson's ratio.

Answers

This is especially true for isotropic materials that have equivalent stiffness in all directions

Poisson’s ratio, v, is a measure of how much a rod reduces in diameter as it stretches out. It has values between 0 and 0.5.

The speed of torsional waves in a circular rod is influenced by Poisson’s ratio, according to the following equation: v ≤ (cT/ cL)2 ≤ (1-v)/2where cT is the torsional wave velocity and cL is the longitudinal wave velocity.

The equation shows that cT and cL are proportional to one another.

As a result, they vary between approximately 58 percent and 71 percent of the longitudinal wave velocity, depending on the value of Poisson’s ratio.

This implies that the velocity of torsional waves is lower than that of longitudinal waves in thin rods.

This is due to the fact that torsional waves generate shear stress in the rod, whereas longitudinal waves produce longitudinal stress in the rod, resulting in differing wave velocities.

This is especially true for materials that are isotropic and have similar stiffness throughout.

learn more about isotropic from given link

https://brainly.com/question/13497738

#SPJ11

3. When a real incompressible fluid flows through a circular pipe, energy is dissipated due to the viscosity of the fluid. The Moody diagram on page 9 represents this energy loss as a dimensionless friction factor (f) which is a function of the Reynolds number of the flow (Re) for both laminar and turbulent flow and also a function of the relative roughness (=/D) for turbulent flow. a) Explain this dependence of friction factor (f) upon the relative roughness (E/D) for turbulent flow and specifically why the friction factor increases with relative roughness at any given Reynolds number. Water with a density of 1000 kg/m³ and dynamic viscosity of 1.0 x 10³ Pa.s flows under gravity from a reservoir through a cast iron pipe of 75mm internal diameter and an equivalent roughness of 0.26mm at a flow rate of 600 litres per minute into the local atmosphere. The flow path comprises a sharp edged entrance from the reservoir into the pipe (loss factor (KL) of 0.5) and a 100m horizontal length of the cast iron pipe. There is no fitting or restriction at the outlet of the pipe into the local atmosphere and so no additional minor head loss. The liquid surface of the reservoir is exposed to the local atmosphere. b) Calculate the major head loss (hL) and minor head loss (hm) in the flow path and the height of water in the reservoir required above the sharp edged entrance into the pipe to achieve the required flow rate. c) If the height of water in the reservoir above the sharp edged entrance to the pipe and the pipe diameter and length are fixed, propose two other ways to increase the flow rate from the reservoir, evaluate their relative effectiveness and state which is the best option. Steady, uniform, and laminar flow of a fluid with dynamic viscosity (n) occurs between two horizontal, infinite, parallel plates separated by a distance (h) in the vertical direction (y). The lower plate (y=0) is stationary and the upper plate (y=h) moves with velocity (U) in the direction of flow (x). The vertical coordinate (y) where the maximum velocity (u) occurs, (y'), is given by below equation. Assume fluid of dynamic viscosity 0.5 Pa.s passes between the two plates which are 20mm apart with a pressure difference per unit length in the (x) direction of -500 Pa/m. h Undp hdx, 2 d) Calculate what happens to (y') as the upper plate velocity (U) increases from 0 (stationary) to 0.1 m/s and then to 0.2 m/s. With the aid of sketches, provide a physical explanation for this behaviour.

Answers

a) The friction factor increases with relative roughness at any given Reynolds number for turbulent flow because there is more resistance caused by the increased roughness. The rougher the pipe, the more it resists the flow, which results in a higher friction factor.

b) The following formulas can be used to calculate the major head loss (hL) and minor head loss (hm) in the flow path and the height of water in the reservoir required above the sharp-edged entrance into the pipe to achieve the required flow rate:

First, compute the velocity in the pipe:

[tex]v = Q/A = (600/1000) / [(pi/4)*(75/1000)^2] = 1.81 m/s[/tex]
where:

Q is the flow rate (l/min)
A is the cross-sectional area of the pipe (m²)

Compute the Reynolds number:

[tex]Re = (Dvρ) / μ = (75/1000)(1.81)(1000) / 1 x 10^-3 = 136,029[/tex]

Compute the friction factor:

Use the Moody chart to determine the friction factor:

From the chart, f = 0.03

Compute the major head loss:

[tex]hL = (fLv²) / (2gd) = (0.03)(100)(1.81²) / (2 x 9.81 x 100/1000) = 1.6 m[/tex]

where:

L is the pipe length (m)
g is the gravitational acceleration (9.81 m/s²)

Compute the minor head loss:

[tex]hm = KL(v²/2g) = 0.5(1.81²/2 x 9.81) = 0.17 m[/tex]

Compute the height of water:

Pump head = hL + hm = 1.6 + 0.17 = 1.77 m

c) Two ways to increase the flow rate from the reservoir are to increase the pipe diameter or decrease the pipe length. Increasing the pipe diameter is more effective than decreasing the pipe length because it has a greater impact on the flow rate. Doubling the pipe diameter, for example, would increase the flow rate by a factor of 16.

d) The value of y' decreases as the upper plate velocity U increases from 0 (stationary) to 0.1 m/s and then to 0.2 m/s. As the velocity of the upper plate increases, the flow rate and Reynolds number also increase. The increased flow rate pushes the maximum velocity point towards the lower plate.

To know more about increases visit :

https://brainly.com/question/2285058

#SPJ11


An object has a circular path with radius 8.00 cm. The angular velocity of the object is 150
rad/s. Determine (a) tangential velocity and (b) centripetal force.

Answers

Therefore, the tangential velocity of the object is 12 m/s and the centripetal force acting on the object is 22500 N

To determine the tangential velocity and centripetal force of an object moving in a circular path, we can use the following formulas:

(a) Tangential velocity (v):

v = r * ω

where r is the radius of the circular path and ω is the angular velocity.

(b) Centripetal force (F):

F = m * a = m * ([tex]v^2[/tex] / r)

where m is the mass of the object, v is the tangential velocity, and a is the centripetal acceleration.

Radius, r = 8.00 cm = 0.08 m

Angular velocity, ω = 150 rad/s

(a) Tangential velocity:

v = r * ω

v = 0.08 m * 150 rad/s

Calculate the value:

v = 12 m/s

(b) Centripetal force:

F = m * ([tex]v^2[/tex] / r)

F = m * (12 [tex]m/s)^2[/tex] / 0.08 m

Simplify the equation and substitute the appropriate values:

F = m * 1800 [tex]m^2/s^2[/tex] / 0.08 m

Calculate the value:

F = m * 22500 N.

To know more about centripetal force refer to-

https://brainly.com/question/14021112

#SPJ11

Two identical traveling waves of amplitude 0.7 m, moving in the same direction, are out of phase by Pi/6rad. Find the amplitude of the resultant wave.

Answers

The amplitude of the resultant wave is 1.4 m.

To find the amplitude of the resultant wave, we need to consider the interference of the two traveling waves. Given that the waves are identical in amplitude (0.7 m) and are out of phase by π/6 radians, we can use the principle of superposition to determine the resultant amplitude.

When two waves interfere constructively, their amplitudes add up, and when they interfere destructively, their amplitudes cancel out. In this case, since the waves are out of phase, they will interfere constructively.

To determine the amplitude of the resultant wave, we can use the formula:

Resultant amplitude = √(Amplitude1^2 + Amplitude2^2 + 2 * Amplitude1 * Amplitude2 * cos(Δφ))

Where Amplitude1 and Amplitude2 are the amplitudes of the two waves, and Δφ is the phase difference between them.

Plugging in the given values, we have:

Resultant amplitude = √((0.7 m)^2 + (0.7 m)^2 + 2 * (0.7 m) * (0.7 m) * cos(π/6))

Simplifying the expression, we find:

Resultant amplitude ≈ √(0.49 m^2 + 0.49 m^2 + 2 * 0.49 m^2 * cos(π/6))

Resultant amplitude ≈ √(1.96 m^2 + 0.98 m^2)

Resultant amplitude ≈ √(2.94 m^2)

Resultant amplitude ≈ 1.4 m

Therefore, the amplitude of the resultant wave is 1.4 m.

Learn more about amplitude

brainly.com/question/9525052

#SPJ11

which of the following is not true about integrated circuits

Answers

The statement that is not true about integrated circuits is Invented in 1961. The first functional integrated circuit was demonstrated in 1958 after which integrated circuit development commenced in the late 1950s. Therefore, option A is correct.

Integrated circuits (ICs) are electronic devices that consist of multiple electronic components, such as transistors, resistors, and capacitors, fabricated onto a single semiconductor substrate. They revolutionized the field of electronics by enabling miniaturization, increased functionality, and improved performance of electronic systems.

Option B, stating that ICs are 1/4 square inches in size, is a generalization and not universally true. The size of integrated circuits can vary significantly depending on their complexity and intended application. While some ICs may indeed be small enough to fit within a 1/4 square inch area, others can be larger or much smaller.

Option C, mentioning that ICs contain thousands of transistors, is true. Integrated circuits are designed to incorporate a large number of transistors, which are the fundamental building blocks of electronic circuits. The number of transistors on an IC can range from a few hundred to billions, depending on the complexity and scale of the circuit.

In conclusion, the false statement about integrated circuits is that they were invented in 1961. The development of integrated circuits began in the late 1950s, and the first working integrated circuit was demonstrated in 1958.

However, the widespread commercialization and adoption of integrated circuits occurred in subsequent years, leading to their significant impact on various industries and technologies. Therefore, option A is correct.

To know more about integrated circuits refer here:

https://brainly.com/question/33453751#

#SPJ11

Complete Question:

Which of the following is not true about integrated circuits?

A.invented in 1961

B. 1/4 square inches in size

C. contains thousands of transistor

D. all​

A 90.8−kg baseball player slides into second base. The coefficient of kinetic friction between the player and the ground is μ
k

=0.680. (a) What is the magnitude of the frictional force? (b) If the player comes to rest after 1.26 s, what is his initial speed? (a) Number Units (b) Number Units

Answers

Part (a) Frictional force acting on the player = 591.2224 N

Part (b)Initial speed of the player = -8.19 m/s

a) Magnitude of the frictional force

The force of friction formula is:

Force of Friction = Normal Force * Coefficient of Friction

Normal Force is given by: Normal Force = Mass * Acceleration due to gravity

Therefore, Frictional Force = Mass * Acceleration due to gravity * Coefficient of Friction

Frictional Force = 90.8 kg * 9.8 m/s² * 0.680

Frictional Force = 591.2224 N

We know that the magnitude of the frictional force acting on the player is 591.2224 N.

b) Initial speed of the player

The force acting on the player is the frictional force acting in the opposite direction to the direction of motion, which is given by:

F = ma

where F is the frictional force acting on the player, m is the mass of the player and a is the acceleration of the player.

Initial velocity of the player is given by: u = v - at

where u is the initial velocity, v is the final velocity, a is the acceleration and t is the time taken.

To find the final velocity of the player, we can use the formula, v = u + at

where v is the final velocity, u is the initial velocity, a is the acceleration and t is the time taken.

Substituting the values given, we have: v = 0 (since the player comes to rest) u = ? a = Frictional force acting on the player / mass of the player a = 591.2224 N / 90.8 kg = 6.5 m/s²t = 1.26 s

Substituting the values in the equation for v, we get 0 = u + (6.5 m/s²) (1.26 s)u = - 8.19 m/s

The initial velocity of the player is -8.19 m/s. Part (a)Frictional force acting on the player = 591.2224 NPart (b)Initial speed of the player = -8.19 m/s

To learn more about frictional force follow the given link

https://brainly.com/question/24386803

#SPJ11


Problem 12: An electron moves in the positive
x-direction at 3x106 m/s measured within precision of 0.10%.
Find
uncertainty in measuring its position assuming its going in a
straight fashion.

Answers

The electron is moving in the positive x-direction at a velocity of 3 × 106 m/s. The precision is 0.10%. To find: Uncertainty in measuring its position.

Uncertainty principle: The product of uncertainty in position and the uncertainty in momentum of a particle is always greater than or equal to Planck's constant.Δx.Δp ≥ h / 4π.

The momentum of the electron can be calculated using its mass and velocity as follows:p = mv where,m = mass of the electron = 9.1 × 10-31 kgv = velocity of the electron = 3 × 106 m/s.

Therefore,p = (9.1 × 10-31 kg) × (3 × 106 m/s)p = 27.3 × 10-25 kg m/s.

The uncertainty in momentum can be calculated as follows:Δp = (0.10 / 100) × pΔp = 0.10% of 27.3 × 10-25 kg m/sΔp = (0.10 / 100) × 27.3 × 10-25 kg m/sΔp = 0.0273 × 10-25 kg m/sΔp = 2.73 × 10-27 kg m/s.

Now, substituting the values of h and Δp in the uncertainty principle formula:

Δx.Δp ≥ h / 4πΔx ≥ h / 4πΔpΔx ≥ (6.626 × 10-34 J s) / 4π(2.73 × 10-27 kg m/s)Δx ≥ 6.626 × 10-34 J s / 4π(2.73 × 10-27 kg m/s)Δx ≥ 6.05 × 10-7 m.

Therefore, the uncertainty in measuring the position of the electron is 6.05 × 10-7 m.

Learn more about Uncertainty principle here ;

https://brainly.com/question/30402752

#SPJ11

How many 40μF capacitors must be connected in parallel to store a charge of 1C with a potential of 100 V across the capacitors? 1. 1000 2. 625 3. 0500 4. 0400 5. 0250

Answers

The formula that relates capacitance (C), charge (Q), and potential difference (V) is Q = CV. Here, we need to find out how many 40μF capacitors must be connected in parallel to store a charge of 1C with a potential of 100 V across the capacitors.

We can find out the number of capacitors required using the formula:Q = CVQ = 1C, V = 100V, and C = 40μFThe formula is:

Q = CV=> C = Q/V=> 40μF = 1C/100V=> C = 0.01F

Now,

we can find the number of capacitors required using the formula:

N = Ceq/C, where Ceq is the equivalent capacitance.N = number of capacitors required C = capacitance of each capacitor Ceq = Q/VN = Ceq/C => N = (Q/V)/C => N = (1C/100V)/(40μF)=> N = 250Hence, 250 capacitors are needed to store a charge of 1C with a potential of 100 V across the capacitors. Therefore, the correct option is 5. 0250.

To know more about potential visit:

https://brainly.com/question/28300184

#SPJ11

A point source emits sound waves isotropically. The intensity of the waves 3.20~\mathrm{m}3.20 m from the source is 1.76 \times 10^{-6}~\mathrm{W/m^2}1.76×10−6 W/m2. Let us assume that the energy of the waves is conserved. At what distance RR from the source, do sound waves have a sound level of 0db

Answers

At a distance of approximately 7.54 x [tex]10^{-4}[/tex]meters from the source (0.754 mm), the sound waves would have a sound level of 0 dB.

To determine the distance from the source at which sound waves have a sound level of 0 dB, we need to understand the relationship between sound intensity and sound level.

Sound intensity (I) is measured in watts per square meter (W/m²) and is related to sound level (L) in decibels (dB) through the following equation:

L = 10 log₁₀(I/I₀)

Where I₀ is the reference intensity, which corresponds to the threshold of hearing and is approximately 1.0 x [tex]10^{-12}[/tex]W/m².

In this case, the sound level is given as 0 dB, which means that the sound intensity is equal to the reference intensity:

L = 0 dB

I = I₀ = 1.0 x [tex]10^{-12}[/tex] W/m²

We are given the intensity at a distance of 3.20 m from the source, which is 1.76 x [tex]10^{-6}[/tex] W/m². To find the distance (R) at which the sound level is 0 dB, we need to find the point where the intensity decreases to the reference intensity.

Using the inverse square law for sound intensity, which states that sound intensity decreases with the square of the distance from the source:

I = I₀ / [tex]R^{2}[/tex]

Setting the two intensity values equal to each other:

1.76 x [tex]10^{-6}[/tex] W/m² = 1.0 x [tex]10^{-12}[/tex] W/m² / [tex]R^{2}[/tex]

[tex]R^{2}[/tex] = (1.0 x [tex]10^{-12}[/tex] W/m²) / (1.76 x [tex]10^{-6}[/tex] W/m²)

≈ 5.68 x [tex]10^{-7}[/tex] m²

Taking the square root of both sides:

[tex]R= \sqrt{5.68*10^{-7}m^{2} }[/tex]

≈ 7.54 x [tex]10^{-4}[/tex] m

Learn more about intensity here:

https://brainly.com/question/17583145

#SPJ11

Use physical standards used to develop the Celsius and Fahrenheit temperature scales. Now, come up with a new temperature scale that is based on different physical standards. Be as imaginative as possible.

Answers

The Celsius and Fahrenheit temperature scales were both established using the properties of substances under specific conditions.

One of the physical standards that was used to develop the Celsius temperature scale is the melting point of ice (0°C) and boiling point of water (100°C) under atmospheric pressure.

On the other hand, the Fahrenheit temperature scale was established using a mixture of water, salt, and ice that resulted in a temperature of 0°F, and the human body temperature was used as a reference point for 98.6°F.

Now, let's create a new temperature scale based on different physical standards. We can call it the Quantum temperature scale, which uses the properties of an atom as a reference point.

The idea is to make use of the atomic resonance frequency, which is the frequency at which an atom will absorb a photon of light. Each atom has a unique resonance frequency that corresponds to a specific temperature.

Let's use the hydrogen atom as an example. The hydrogen atom has a resonance frequency of 1.42 GHz at a temperature of 0K (Kelvin).

The Quantum temperature scale would use this frequency as its reference point. As the temperature increases, the resonance frequency of the hydrogen atom will shift, and the scale would be calibrated accordingly.

For example, at 100K, the resonance frequency of the hydrogen atom would be 1.44 GHz. Therefore, 100K would be equivalent to 1.44 GHz on the Quantum temperature scale.

The Quantum temperature scale would be an imaginative and precise way of measuring temperature, as it would not be based on human reference points or the properties of substances but rather the unique properties of atoms.

To learn more about celsius follow the given link

https://brainly.com/question/30391112

#SPJ11

A charge of -e is situated at the origin of an x-axis, a second charge of -5 e exists 4 mm to the left of the origin, and a third charge of +4 e is situated 4 μm to the right of the origin. Determine the total force on the left-most charge. F⃗ = __________ N

Answers

A charge of -e is situated at the origin of an x-axis, a second charge of -5 e exists 4 mm to the left of the origin, and a third charge of +4 e is situated 4 μm to the right of the origin.

Formula: Coloumb's Law

F = Kq1q2/r2

Where,K = Coulombs constant

K= 9 × [tex]10^9[/tex] N [tex]m^2[/tex]/[tex]C^2[/tex]

q1, q2 are the chargesr is the distance between the charges The force on the left-most charge (q1) due to the other charges (q2, q3) can be calculated by the following steps:Since the charges q1 and q2 are of the same sign, the force on q1 due to q2 will be repulsive.

F12 = Kq1q2/r

[tex]12^2[/tex] = 9 × [tex]10^9[/tex] × (-e) × (-5e)/(4 ×[tex])^2[/tex]

[tex]12^2[/tex] = 1.125 × [tex]10^{-2}[/tex] N

Since the charges q1 and q3 are of opposite sign, the force on q1 due to q3 will be attractive. F13 = Kq1q3/r

[tex]13^2[/tex] = 9 × [tex]10^9[/tex] × (-e) × (+4e)/(4 × [tex]10^{-6})^2[/tex] = 9 × [tex]10^{-2}[/tex] N

Therefore, the net force on q1 is given by the vector sum of the individual forces: F1 = F12 + F13

F1 = -1.0125 × [tex]10^{-1}[/tex] N (to the left)

So,

F⃗ = -1.0125 × [tex]10^{-1}[/tex] N.

To know more about origin visit:

https://brainly.com/question/31317185

#SPJ11

What is the wavelength of the photon with energy E=3.3×10
−18
J. Use nm (nanometer) for the unit of the wavelength. Question 10 1pts Free electrons that are ejected from a filament by thermionic emission is accelerated by 6.4kV of electrical potential difference. What is the kinetic energy of an electron after the acceleration? Answer in the unit of eV.

Answers

To calculate the wavelength of a photon given its energy, you can use the following formula: E = hc/λ

λ = hc/E

Substituting the given values:

λ = (6.626 × 10^-34 J·s × 3 × 10^8 m/s) / (3.3 × 10^-18 J)

Simplifying the expression:

λ = (6.626 × 3) / 3.3 × 10^(-34 + 8 + 18)

λ ≈ 6.03 × 10^-7 m

To convert this to nanometers, we multiply by 10^9:

λ ≈ 6.03 × 10^(-7 + 9) nm

λ ≈ 603 nm

Therefore, the wavelength of the photon with energy E = 3.3 × 10^-18 J is approximately 603 nm. Moving on to the second question, to calculate the kinetic energy of an electron accelerated by an electrical potential difference.

Kinetic energy (K.E.) = qV

Substituting the given values:

K.E. = (1.6 × 10^-19 C) × (6.4 × 10^3 V)

Simplifying the expression:

K.E. = 10.24 × 10^(-13) eV

K.E. ≈ 10.24 × 10^(-13) eV

Therefore, the kinetic energy of an electron after acceleration by 6.4 kV of electrical potential difference is approximately 10.24 × 10^(-13) eV.

To learn more about wavelength follow:

https://brainly.com/question/32900586

#SPJ11

explain why the electrical charge on an atom is zero

Answers

The electrical charge on an atom is zero due to presence of same number of protons and electrons.

An atom is the smallest entity comprising of three components. These are protons, neutrons and electrons. Protons and neutrons are centrally located forming the nucleus while electrons revolve around the nucleus. Protons are positively charged while electrons are negatively charged. Neutrons are neutral due to lack of charge.

The number of protons and electrons are same in an atom owing to balancing the overall charge in an atom. This makes the atom electrical neutral and hence the charge on an atom is zero.

Learn more about electrical charge -

https://brainly.com/question/2373424

#SPJ4

Two point charges are located a distance of 2 m apart. Charge one is +2C and charge two is −3C. What is the potential energy for that configuration? [K=9

10

9Nm

2/C

2] −27

10

9 J −9

10

9 J −13.5

10

9 J −14

10

9 J

Answers

Let us first calculate the electrostatic force experienced by the point charges due to each other.

The force experienced by charge 1 due to charge 2 is:

[tex]$$\begin{aligned} F_{1,2} &=\frac{1}{4\pi\varepsilon_0}\frac{Q_1Q_2}{r^2}\\ &=\frac{1}{4\pi(9\times10^9)}\frac{2\times(-3)}{2^2}\\ &=\frac{-3}{4\pi(9\times10^9)}\\ &= -1.25\times10^{-10}N\end{aligned}$$[/tex]

Where

r = 2m

is the distance between the two-point charges, and

Q1 = 2C and Q2 = -3C

are the magnitudes of the two-point charges.

Now, the potential energy of the two-point charges is given by:

[tex]$$U_{1,2}=K_e\frac{Q_1Q_2}{r}$$$$\begin{aligned} U_{1,2} &= (9\times10^9)\frac{(2)(-3)}{2}\\ &=(-27\times10^9)J\\ &= -2.7\times10^{10}J\end{aligned}$$[/tex]

the potential energy for the configuration is -2.7×10¹⁰J, which is represented by option D.

To know more about electrostatic visit:

https://brainly.com/question/16489391

#SPJ11

A particle moves in a straight line with a constant acceleration of 4.88 m/s2 in the positive x direction.

a) If its initial velocity is 2.19 m/s in the positive x direction, then how long, in seconds, does it take to move 6.23 m?

b) What is the particle’s final velocity in m/s?

Answers

The time taken to move 6.23 m is approximately 1.19 seconds. The particle's final velocity is 8.06 m/s.

Initial velocity (u) = 2.19 m/s

Acceleration (a) = 4.88 m/s²

Distance (s) = 6.23 m

To find:Time taken (t) = ?

We know, v² = u² + 2as

Where,v = final velocity = ?

u = initial velocity = 2.19 m/s

a = acceleration = 4.88 m/s²

s = distance = 6.23 m

Let's find the final velocity,v² = u² + 2as

v² = (2.19)² + 2(4.88)(6.23)

v² = 4.7961 + 60.3248

v² = 65.1209

v = √65.1209

v ≈ 8.06 m/s

So, the final velocity of the particle is approximately 8.06 m/s.

a) Now, let's find the time taken,t = (v - u) / at

t = (8.06 - 2.19) / (4.88)

t ≈ 1.19 s

Therefore, the time taken to move 6.23 m is approximately 1.19 seconds.

b) The particle's final velocity is 8.06 m/s.

Learn more about the velocity from the given link-

https://brainly.com/question/80295

#SPJ11

Thickest
1 :: Earth (from crust to core)
2:: lithosphere
3:: pedosphere Thinnest

Answers

The earth is made up of three main layers: the core, the mantle, and the crust. The thickness of the earth's layers varies, with the thickest layer being the mantle and the thinnest layer being the crust.

The crust is divided into two main layers: the continental crust and the oceanic crust. The thickness of the earth's crust varies depending on where you are on the planet.

For example, the continental crust is thicker than the oceanic crust because it is made up of denser materials.

The thickest part of the earth is the mantle. The mantle is approximately 2,890 kilometers (1,796 miles) thick. It is composed of silicate rock and is divided into two parts: the upper mantle and the lower mantle.

The lithosphere is the solid outermost layer of the earth. It is composed of the crust and the uppermost part of the mantle. The thickness of the lithosphere varies depending on where you are on the planet.

For example, the lithosphere is thicker under continents than it is under oceans. The thickness of the lithosphere ranges from 70 to 250 kilometers (43 to 155 miles). The pedosphere is the outermost layer of the earth's crust that is capable of supporting plant life. It is composed of soil and other organic matter.

The thickness of the pedosphere varies depending on the type of soil and the location. In general, the pedosphere is between 10 and 50 centimeters (4 and 20 inches) thick.

Learn more about earth here ;

https://brainly.com/question/31064851

#SPJ11

"
(a) A one dimensional collision occurs between a cart of mass
10.0 kg moving to the right at 4.0 m/s and a block of mass 6.0 kg
moving to the left at 12.0 m/s. After the collision, the block
moves to
"

Answers

After the collision, the block moves to the right at 4.5 m/s. The velocity of the cart after the collision is approximately -5.9 m/s (to the left).

To solve this problem, we can apply the principles of conservation of momentum. The total momentum before the collision should be equal to the total momentum after the collision.

Given:

Mass of cart (m₁) = 10.0 kg

Initial velocity of cart (v₁i) = 4.0 m/s (to the right)

Mass of block (m₂) = 6.0 kg

Initial velocity of block (v₂i) = -12.0 m/s (to the left)

Final velocity of block (v₂f) = 4.5 m/s (to the right)

Let's denote the final velocity of the cart as v₁f.

Conservation of momentum equation:

m₁  v₁i + m₂  v₂i = m₁  v₁f + m₂  v₂f

Substituting the given values:

(10.0 kg * 4.0 m/s) + (6.0 kg * (-12.0 m/s)) = (10.0 kg * v₁f) + (6.0 kg * 4.5 m/s)

Simplifying the equation:

40.0 kg m/s - 72.0 kg m/s = 10.0 kg * v₁f + 27.0 kg m/s

Combining like terms:

-32.0 kg m/s = 10.0 kg * v₁f + 27.0 kg m/s

Rearranging the equation:

10.0 kg * v₁f = -32.0 kg m/s - 27.0 kg m/s

10.0 kg * v₁f = -59.0 kg m/s

Dividing both sides by 10.0 kg:

v₁f = (-59.0 kg m/s) / 10.0 kg

v₁f = -5.9 m/s

Therefore, the velocity of the cart after the collision is approximately -5.9 m/s (to the left).

Learn more about velocity here:

https://brainly.com/question/30559316

#SPJ11

The complete question is:

A one dimensional collision occurs between a cart of mass 10.0 kg moving to the right at 4.0 m/s and a block of mass 6.0 kg moving to the left at 12.0 m/s. After the collision, the block moves to the right at 4.5 m/s. What is the velocity of the cart after the collision?

Electromagnetio radiation is emitied by accoleratng Part A charges. The rale at which ereegy is emined from an accelsating chargn that has charged and. acceleration a is given by d4x=6 crep 231a2 where c when fraction of tis energy does trad ale ber second? is the spend of light.

Answers

The rate at which energy is emitted from an accelerating charged particle is given by the formula dE/dt = (2/3) (e^2/4πε₀c³) a², where e is the charge of the particle and a is its acceleration. The expression (2/3) (e^2/4πε₀c³) represents a constant factor. The energy emitted per second is directly proportional to the square of the acceleration of the charged particle.

The rate at which energy is emitted from an accelerating charged particle can be derived from the theory of classical electrodynamics. The formula dE/dt = (2/3) (e^2/4πε₀c³) a² represents the power radiated by the charged particle. Here, e is the charge of the particle, a is its acceleration, ε₀ is the permittivity of free space, and c is the speed of light.

The expression (2/3) (e^2/4πε₀c³) represents a constant factor that depends on the properties of the particle and the medium in which it is accelerating. The energy emitted per second, or the power, is directly proportional to the square of the acceleration of the charged particle.

Therefore, the rate at which energy is emitted from an accelerating charged particle is determined by the square of its acceleration, and the constant factor (2/3) (e^2/4πε₀c³) represents the proportionality between the power and the acceleration.

To know more about acceleration click here:

https://brainly.com/question/2303856

#SPJ11


an object moves along the x axis according to the
equation x(t) = t^3 - 5t^2 +5 where x in m and t in s, the
acceleration of the object at t = 1s in m/s^2 is

Answers

The acceleration of the object at t = 1s is -4 m/s^2. To find the acceleration of the object at t = 1s, we need to determine the second derivative of the position equation with respect to time.

Let's start by finding the first derivative:

v(t) = d/dt [x(t)] = d/dt [t^3 - 5t^2 + 5].

Differentiating each term separately, w have:

v(t) = 3t^2 - 10t.

Now, to find the acceleration, we take the derivative of the velocity equation:

a(t) = d/dt [v(t)] = d/dt [3t^2 - 10t].

Differentiating each term, we get:

a(t) = 6t - 10.

Now, to find the acceleration at t = 1s, we substitute t = 1 into the acceleration equation:

a(1) = 6(1) - 10 = 6 - 10 = -4 m/s^2.

Therefore, the acceleration of the object at t = 1s is -4 m/s^2.

To learn more about kinematics and derivatives, click here:-

brainly.com/question/19567921

#SPJ11

What typically happens to channel width, channel depth, flow velocity, and discharge between the head and mouth of a stream? Briefly explain why these changes occur.

Answers

As a stream flows from its headwaters to its mouth, it typically experiences changes in channel width, channel depth, flow velocity, and discharge. These changes are a result of the stream's changing landscape, specifically the gradient and geology of the terrain it flows through. Generally, stream channels increase in size and depth as they move from their headwaters to their mouths.

The following are the main reasons why these changes occur:

Channel width increases due to greater discharge: Streams gain water as they move downstream and join other streams or rivers, causing their flow to increase. The stream's channel must expand to accommodate the increased flow. In addition, a wider channel lowers the water's velocity, which allows more sediment to accumulate in the stream bed and helps to prevent bank erosion

Channel depth increases due to erosion: When a stream flows over bedrock, it erodes the rock over time, creating a deeper channel. As the channel deepens, it becomes more stable, and the flow becomes less turbulent. The water velocity slows down, allowing more sediment to accumulate on the bottom of the channel, which further deepens it.

Flow velocity slows down as the channel widens and deepens: Water slows down as it moves through a wider and deeper channel. This is because the friction between the water and the channel's bottom and sides increases as the channel widens and deepens. The slower flow velocity also allows for more sediment deposition, which contributes to the channel's widening and deepening.

Discharge increases as streams merge: As streams flow downhill, they accumulate water and join other streams or rivers. As a result, the combined stream's discharge increases. The increase in discharge results in the widening and deepening of the stream's channel to accommodate the increased flow.

Learn more about friction here ;

https://brainly.com/question/13000653

#SPJ11

Other Questions
Consider a system of two blocks that have masses m1 and m2 . Assume that the blocks are point-like particles and are located along the x axis at the coordinates x1 and x2 as shown (Figure 1) . In this problem, the blocks can only move along the x axis.Part GSuppose that vcm=0 . Which of the following must be true?a.|p1x|=|p2x|b.|v1x|=|v2x|c.m1=m2d.none of the above A lighted candle is placed 36 cm in front of a converging lens of focal length 12 cm, which in turn is 56 cm in front of another converging lens of focal length 17 cm (Figure 1). Calculate the image distance of the final image relative the second lens. Follow the sign conventions. Express your answer to two significant figures and include the appropriate units. Calculate the magnification of the final image. Follow the sign conventions. Express your answer using two significant figures. A lighted candle is placed 36 cm in front of a converging lens of focal length 12 cm, which in turn is 56 cm in front of another converging lens of focal length 17 cm Which of the following would be covered under the uninsured motorist section of a personal automobile policy?A. A hit-and-run driver who strikes the insured's vehicle but can not be identified.B. An insured 15-year-old unlicensed son who steals the family car and strikes the insured vehicle.C. A driver with a vehicle owned by a large company that has elected to self-insure rather than purchase insurance who strikes the insured vehicle.D. An insured driver driving a vehicle he does not own who strikes the insured's vehicle. Question 15 Keith took part in a race and ran an initial distance of 900 m at an average speed of 6 km/h. Without stopping, he cycled a further distance of 2 km in 12 minutes. Calculate (a) the time, in hours, he took to run the 900 metres. (b) his average speed for the whole race in km/h. Leave your answer correct to 3 significant figures. Short Sell on Futures Susan shorts a futures contract today. Which of the following is most likely to be true? Select one alternative: She receives a premium today for shorting the futures. None of the above. She agrees to sell the asset at a fixed price at a future date on the OTC. She will get dividends on the underlying asset. You are helping your friend move a new refrigerator into his kitchen. You apply a horizontal force of 264 N in the negative x direction to try and move the 58 kg refrigerator. The coefficient of static friction is 0.63. (a) How much static frictional force does the floor exert on the refrigerator? Give both magnitude (in N) and direction. magnitude 20 Considering your Free Body Diagram, how do the forces in each direction compare? N direction (b) What maximum force (in N) do you need to apply before the refrigerator starts to move? Suppose the following transaction takes place. An Australian gives the shares of Apple company 5 stocks worth Atusz.000 that hif had as a gift to an American friend in the U.S. For Australia, this counts as a____ credit, and_____debitThis transaction____the external wealth of Australia Company as a subsidiary in Switzerland with an initial investment cost of Swiss francs (SFr) 76,000. SunTimes December 31, 20X1, trial balance in SFr is as follows: Debit Credit Cash SFr 7,600 Accounts Receivable (net) 23,500 Receivable from Popular Creek 5,900 Inventory 27,500 Plant & Equipment 101,000 Accumulated Depreciation SFr 10,600 Accounts Payable 13,900 Bonds Payable 52,500 Common Stock 76,000 Sales 142,500 Cost of Goods Sold 72,500 Depreciation Expense 10,600 Operating Expense 31,500 Dividends Paid 15,400 Total SFr 295,500 SFr 295,500Additional Information The receivable from Popular Creek is denominated in Swiss francs. Its books show a $4,307 payable to SunTime. Purchases of inventory goods are made evenly during the year. Items in the ending inventory were purchased November 1. Equipment is depreciated by the straight-line method with a 10-year life and no residual value. A full years depreciation is taken in the year of acquisition. The equipment was acquired on March 1. The dividends were declared and paid on November 1.Exchange rates were as follows: SFr $ January 1 1 = 0.80 March 1 1 = 0.77 November 1 1 = 0.74 December 31 1 = 0.73 20X1 average 1 = 0.75 The U.S. dollar is the functional currency.Required: a. Prepare a schedule remeasuring the December 31, 20X1, trial balance from Swiss francs to dollars. (If no adjustment is needed, select 'No entry necessary'.) Your colleague Nina Peter is also a risk manager at Arcku Asset management Plc and specialises in swaps. She has been temporarily assigned to your hedge fund to assist you.Arcku Plc has outstanding bonds worth 200m, 5 year semi-annual pay, floating rate bonds with coupons rate equal to 180 day LIBOR + 50 basis points with an embedded call option. Arcku Plc is worried that interest rates may rise over the rest of tenor of the issue. This would increase the cost of debt financing and Arcku would like to hedge against this risk.Nina Peter offers two solutions:1. Arcku can call the bonds early, if LIBOR rises above 5% or,2. Take a long position in a swaption with strike rate of 5% for the remaining 3 years.The expected term structure of interest for the remaining tenor of the issue is as follows:180 day LIBOR 4.5%360 day LIBOR 5%540 day LIBOR 5%720 day LIBOR 5.6%900 day LIBOR 6%1080 day LIBOR 4.8%Equity Portfolios:The dividends received from stock holdings were previously re-invested into trending stocks in short-term sub-portfolio until the end of the financial year. Due to recent bleak outlook of the UK economy, Arcku Plcs hedge fund has decided to re-invest the dividend income into foreign currency (Euros) instead, as the UK Pound has been and is expected to continue to lose value against the Euro. If the Pound depreciation against the Euro continues, Arcku expects earn positive returns from this strategy that would help ease up its cash shortages. Dividend income amounts to approximately 2.5% of size of equity portfolio, that is, 2.5 m every quarter.Nina suggests that Arcku Plc should enter into currency swap for next 5 year to exchange the dividend income with another EU based hedge firm whose annual dividend income is the same as Arcku, when converted into Pounds. Given todays exchange rate of 1 = 0.85 any firm with dividend income of / (0. 85 x 2.5 m= 2,125,000) should qualify.If not swaps, Arckus may enter into a forward contract or a future contract or go long in currency option. Any method chosen must consider Arckus current cash shortage and require a minimum cash outflow over the next 2 to 3 months.Currency portfolio:In order to execute a currency hedge, Nina suggests it is important to determine what would be the correct spot price of the currency 3 months from now. Nina thinks that the Pound is likely to depreciate against the Euro, as the UK is expected to have a higher inflation rate compared to mainland Europe. The UK inflation expectation is at 4.5%, while the cost-of-living index for EU is expected to increase by 3% over the next 3 months. The spot exchange today is 0.85 = 1Required:Bonds:(I) Discuss the possible benefits, costs and limitation of the 2 options presented by Nina. (4 marks)(II) Determine the net settlement of Arcku from swaption? (9 marks)(III) Comment on last swap settlement? Can this be avoided? (2 marks)(IV) Derive the equation to show how can Arcku eliminate the uncertainty regarding FRN interest payments by using the swaption? (2 marks)Equity:(V) Critically valuate Ninas statement regarding currency swap on equity dividends.Consider all elements of the suggestion you may or may not agree with? (8 marks)(VI) Assuming a currency swap is not feasible, is a long position in forward or future contract better, considering the cash shortage? (2 marks)(VII) Determine the expected spot exchange 3 months from now. Are Nina expectations of currency movements, correct? An engineer who believed in "save now and play later" wanted to retire in 20 years with $1.5 million. At 10% per year interest, to reach the $1.5 million goal, starting 1 year from now, the engineer must annually invest: a. $28,190 b. $89,680 c. $49,350 d. $26,190 If f(x)=1+lnx, then (f1) (2)= (A) e1 (B) e1 (C) e If cosh(x)= 35 and x>0, find the values of the other hyperbolic functions at x. tanh(x)= A) 5/4 B) 4/5 C) 3/5 D) None Suppose f(x)=x3x. Use a linear approximation at x=2 to estimate f(2.5). A) 10.5 B) 11 C) 11.5 D) 12 If you approach a light beacon while traveling at one-half the speed of light (0.5 c), you will measure the speed of light from the beacon to be...? Use cylindrical coordinates. EvaluateE(x2+y2)dV,whereis the region that lies inside the cylinderx2+y2=16and between the planesz=3andz=3. Determine whether or not the vector fleld is conservative. If it is conservative, find a functionfsuch thatF=Vf. (If the vector field is not conservative, enter DNE.)F(x,y,z)=1+sin(z)j+ycos(z)kf(x,y,z)=Show My Work iontoness SCALCET8 16.7.005. Evaluate the surface integrali,s(x+y+z)d5,5is the paraltelegram with parametric equationx=u+v0,y=u=vne=1+2u+v00u3,0v2. b. Estimate the volumetric strain in each sublayer and thesettlement at the surface that will result from post-liquefactionreconsolidation of the site. Given that sin()= 17/10, and is in Quadrant III, what is cos() ? Give your answer as an exact fraction with a radical, if necessary, Provide your answer below 1, He often(carry).......money with him whenever he goes out.2,The library(not open).........on Sunday.3,my brother usually (go)..........fishing in his free time.4,He always(study).........English for two hours every day. Assume you Work in a cuttomer service call center, One ol your mule coworkers noticat thut muny monen were being pursied up for manugerial poritiont He coworker brings this to the lead supervisor's attertion, who telis him that all of the women in the department were mothers who coulid not harelle the working heurs recuired for a manaser. Your rearncile of ar Tramisorimational le ider Charismatic lesder. Transabional leaber Avtoneris leader Suppose a furniture dealer offers to sell you a $5,000 bedroom suite on the following terms: Make no payment for six months, then pay $450 per month for 12 months. What rate of interest (APR) is being extended?A. 0.67%B. 8.09%C. 8.04% a) Succinctly explain the principles of social change?b) What advantages and disadvantages does social change bring?c) Discuss the main methods of dispute resolution in the context of law and society?d) The hybrid and primary resolution process are key in resolving disputes.Explain with relevant examples these resolution processes? Metamorphism typically occurs deep in the earth. What is the oneinstance where metamorphism can occur at the surface?