Differentiate the function. \[ f(x)=x^{5} \] \[ f^{\prime}(x)= \]

Answers

Answer 1

To differentiate the function f(x) = x^5), we can use the power rule of differentiation. According to the power rule, if we have a function of the form f(x) = x^n), where (n) is a constant, then its derivative is given by:

[f(x) = nx^{n-1}]

Applying this rule to f(x) = x^5), we have:

[f(x) = 5x^{5-1} = 5x^4]

Therefore, the derivative of f(x) = x^5) is (f(x) = 5x^4).

Learn more about Power Rule here :

https://brainly.com/question/30226066

#SPJ11


Related Questions

2 ounces of black cumant ossince for 53 sf per ounce Detertine the cost per ounce of the perfumed The cont per bunce of the gerturne is (Round to the ronarest cern)

Answers

The cost per ounce of the perfumed black currant essence is $53/ounce.

To determine the cost per ounce of the perfumed black currant essence, we need to divide the total cost by the total number of ounces.

Given:

- 2 ounces of black currant essence

- Cost of $53 per ounce

To calculate the total cost, we multiply the number of ounces by the cost per ounce:

Total cost = 2 ounces * $53/ounce = $106

Now, we divide the total cost by the total number of ounces to find the cost per ounce:

Cost per ounce = Total cost / Total number of ounces = $106 / 2 ounces = $53/ounce

Therefore, the cost per ounce of the perfumed black currant essence is $53/ounce.

To know more about ounces, visit:

https://brainly.com/question/26950819

#SPJ11

Evaluate the indefinite integral. ∫x³ √(81+x2) dx ___ + C

Answers

The indefinite integral of ∫x³ √(81+x²) dx is equal to (1/5) (81 + x²)^(5/2) + C.

The indefinite integral of ∫x³ √(81+x²) dx can be evaluated using the substitution method. Let's substitute u = 81 + x².

Taking the derivative of u with respect to x, we have du/dx = 2x, which implies dx = du/(2x).

Now, we can substitute the values of u and dx in terms of u into the integral:

∫x³ √(81+x²) dx = ∫(x²)(x)(√(81+x²)) dx

               = ∫(x²)(x)(√u) (du/(2x))

               = (1/2) ∫u^(1/2) du

               = (1/2) ∫u^(3/2) du

               = (1/2) * (2/5) u^(5/2) + C

               = (1/5) u^(5/2) + C

Substituting back u = 81 + x², we obtain:

(1/5) (81 + x²)^(5/2) + C

Therefore, the indefinite integral of ∫x³ √(81+x²) dx is equal to (1/5) (81 + x²)^(5/2) + C, where C represents the constant of integration.

Learn more about Integral here:

brainly.com/question/33119754

#SPJ11

Stoaches are fictional creatures, brought back from extinction using ancient genetic material preserved in amber.

Stoach weights are normally distributed, with mean 1360g and standard deviation 111g.

State the probability that a randomly selected stoach weighs more than 1184g.

(Report the probabilities using at least 4 decimal places.)

Answers

The probability that a randomly selected stoach weighs more than 1184g is 0.9429 (rounded to 4 decimal places).

Given that stoaches are fictional creatures, brought back from extinction using ancient genetic material preserved in amber and Stoach weights are normally distributed, with a mean of 1360 g and a standard deviation of 111 g.The probability that a randomly selected stoach weighs more than 1184g is as follows: We can calculate the z-score as follows:z = (x - μ) / σz = (1184 - 1360) / 111z = -1.5772We can now find the probability by using a standard normal distribution table or calculator. Using the calculator, we find the probability as follows: P(z > -1.5772) = 0.9429.

Let's learn more about probability:

https://brainly.com/question/13604758

#SPJ11

Find the extremum of f(x,y) subject to the given constraint, and state whether it is a maximum or a minimum. f(x,y)=xy;5x+y=10 Find the Lagrange function F(x,y,λ). F(x,y,λ)=−λ

Answers

The extremum of f(x, y) = xy subject to the constraint 5x + y = 10 occurs at the point (1, 5). The nature of this extremum (maximum or minimum) cannot be determined based on the second derivative test alone.

To find the extremum of f(x, y) = xy subject to the constraint 5x + y = 10, we can use the Lagrange multiplier method.

We start by defining the Lagrange function F(x, y, λ) = xy - λ(5x + y - 10), where λ is the Lagrange multiplier.

Taking the partial derivatives of F with respect to x, y, and λ, and setting them equal to zero, we get the following system of equations:

∂F/∂x = y - 5λ = 0

∂F/∂y = x - λ = 0

∂F/∂λ = 5x + y - 10 = 0

From the first equation, we have y = 5λ, and from the second equation, we have x = λ. Substituting these values into the third equation, we get 5λ + 5λ - 10 = 0, which simplifies to λ = 1.

Substituting λ = 1 back into the first and second equations, we find y = 5 and x = 1.

So, the extremum occurs at the point (1, 5) with f(1, 5) = 1 * 5 = 5.

To determine whether this extremum is a maximum or a minimum, we can perform the second derivative test. However, since the Hessian matrix is identically zero for this function, the second derivative test is inconclusive.

Learn more about Hessian matrix here:

brainly.com/question/33184670

#SPJ11

Find the polar coordinates of the point. Then. exgress the angle in degreos and again in radiars, using tine 1mallest possible positeve angle. (5^3 ,−5) The polar cordinate of the point are Find the rectangular coordinates of the point. (9,−210°) The rectangular coordinates of the point are (Type an ordered pair. Simplify your answer, including any radicals.

Answers

The angle in radians is approximately -1.862 radians.

The polar coordinates of the point (5^3, -5) are (5^3, -1.768). To convert these polar coordinates to rectangular coordinates, we use the formulas:

x = r*cos(theta)

y = r*sin(theta)

Substituting the given values, we get:

x = (5^3)*cos(-1.768) = -82.123

y = (5^3)*sin(-1.768) = -166.613

Therefore, the rectangular coordinates of the point are (-82.123, -166.613).

To express the angle in degrees, we convert radians to degrees by multiplying by 180/π. The angle in degrees is approximately -101.12°.

To express the angle in radians, we need to find the smallest positive angle that is coterminal with -1.768 radians. Since one full revolution is 2π radians, we add or subtract multiples of 2π to get the smallest positive angle.

-1.768 + 2π = 4.420 - 6.283 = -1.862 radians

Therefore, the angle in radians is approximately -1.862 radians.

Know more about polar coordinates here:

https://brainly.com/question/31904915

#SPJ11

Select a correct statement of the first law.
A. heat transfer equals the work done for a process
B. heat transfer minus work equals change in enthalpy
C. net heat transfer equals net work plus internal energy change for a cycle
D. net heat transfer equals the net work for a cycle.
E. none of the above

Answers

The correct statement of the first law is: C.

net heat transfer equals net work plus internal energy change for a cycle.

The first law of thermodynamics is the conservation of energy.

It can be stated as follows:

Energy is conserved:

it can neither be created nor destroyed, but it can change forms.

It is also referred to as the law of conservation of energy.

In terms of energy, the first law of thermodynamics can be represented mathematically as:

ΔU = Q - W

Where ΔU = Change in internal energy

Q = Heat added to the system

W = Work done by the system

Heat transfer (Q) equals the work done (W) plus the change in internal energy (ΔU) for a cycle.

This is a statement of the first law of thermodynamics.

Therefore, option C, "net heat transfer equals net work plus internal energy change for a cycle," is the correct answer.

To know more about system visit:

https://brainly.com/question/3196658

#SPJ11

Let h(x)=x^2−9x
(a) Find the average rate of change from 6 to 7.
(b) Find an equation of the secant line containing (6,h(6)) and (7,h(7)).
(a) The average rate of change from 6 to 7 is (Simplify your answer.)

Answers

The average rate of change from 6 to 7 is -5 and the equation of the secant line containing the points (6,h(6)) and (7,h(7)) is y = -5x + 12.

The average rate of change from 6 to 7 can be found by calculating the difference in the function values divided by the difference in the input values. To find the equation of the secant line containing the points (6, h(6)) and (7, h(7)), we need to determine the slope of the line. The slope of a line passing through two points (x₁, y₁) and (x₂, y₂) is given by (y₂ - y₁) / (x₂ - x₁)

Given the function [tex]h(x)=x^{2} -9x[/tex].

To calculate (a) the average rate of change from 6 to 7. (b) Find an equation of the secant line containing (6,h(6)) and (7,h(7)).

(a) The average rate of change from 6 to 7 is equal to the difference in output values divided by the difference in input values.

So, using the formula: The average rate of change of a function f(x) over the interval [a, b] is: (f(b)−f(a))/(b−a)

The average rate of change of h(x) from 6 to 7 is: h(7)-h(6))/(7-6) = (49-54)/(1) = -5

Hence, the average rate of change from 6 to 7 is -5.

The formula for the average rate of change of a function over the interval [a, b] is: (f(b)-f(a))/(b-a)

(b) To find an equation of the secant line containing (6,h(6)) and (7,h(7)), we need to find the slope of the secant line.

The slope of a line passing through two points (x₁, y₁) and (x₂, y₂)) is: (y₂)-y₁)/(x₂-x₁)

Using this formula, we have: h(7) - h(6) / 7 - 6 = (49-54)/1 = -5

So the slope of the secant line is -5.

Therefore, we can find the equation of the secant line using the point-slope form of the equation of a line: y-y₁ = m(x-x₁)

Using the point (6,h(6)) = (6,-18) and the slope m = -5, we get: y - (-18) = -5(x - 6)

Simplifying and solving for y, we get: y = -5x + 12

So the equation of the secant line containing the points (6,h(6)) and (7,h(7)) is y = -5x + 12.

To know more about the average and secant line visit:

brainly.com/question/31320367

#SPJ11

How are ARCH models estimated? OLS 2SLS GLS ML QUESTION 7 A model with the following conditional variance function is what type of model? ARCH(3) ARDL(2) ARDL(3) VAR

Answers

ARCH (Autoregressive Conditional Heteroscedasticity) models are estimated using Maximum Likelihood (ML) estimation. Regarding Question 7, if the model has the given conditional variance function, it corresponds to an ARCH(3) model.

In the case of ARCH models, the ML estimation process involves the following steps:

1. Specify the ARCH model: Determine the appropriate order of the ARCH model by analyzing the autocorrelation and partial autocorrelation functions of the squared residuals (or other suitable diagnostic tests). For example, an ARCH(3) model implies that the conditional variance at time t depends on the squared residuals at time t-1, t-2, and t-3.

2. Formulate the likelihood function: The likelihood function specifies the probability of observing the given data under the assumed ARCH model. In ARCH models, the likelihood function is constructed based on the assumption that the errors follow a normal distribution with mean zero and a time-varying conditional variance.

3. Maximize the likelihood function: The goal is to find the parameter values that maximize the likelihood function. This is typically achieved using numerical optimization techniques, such as the Newton-Raphson algorithm or the BFGS algorithm.

4. Estimate the parameters: Once the likelihood function is maximized, the estimated parameter values are obtained. These estimates represent the best-fitting values that maximize the likelihood of observing the given data.

Therefore, the answer to Question 7 is: ARCH(3).

Learn more about variance:

https://brainly.in/question/26967579

#SPJ11

1) Biased but Consistent Show why a model with a lagged dependent variable is biased but consistent when u t​
is not autocorrelated. 2) Biased and Inconsistent Show why a model with a lagged dependent variable is biased and inconsistent when u t​ is autocorrelated.

Answers

A model with a lagged dependent variable is biased and inconsistent when the error term ([tex]u_t[/tex]) is autocorrelated.

When the error term [tex]u_t[/tex] is autocorrelated, it violates one of the assumptions of classical linear regression models, namely the assumption of no autocorrelation in the error term. Autocorrelation occurs when the error terms at different time periods are correlated.

In the presence of autocorrelation, including a lagged dependent variable in the model leads to biased and inconsistent coefficient estimates. The bias arises because the lagged dependent variable is correlated with the autocorrelated error term. This correlation introduces endogeneity, and as a result, the coefficient estimate of the lagged dependent variable is biased.

Furthermore, the inclusion of the lagged dependent variable exacerbates the inconsistency of the estimates. Inconsistency means that as the sample size increases, the estimates do not converge to the true population value. Autocorrelation amplifies this inconsistency issue, causing the estimates to deviate further from the true value as the sample size increases. This happens because the presence of autocorrelation violates the assumptions required for the ordinary least squares (OLS) estimator to be consistent.

To address the bias and inconsistency caused by autocorrelation, one can employ techniques such as instrumental variables or generalized least squares that are appropriate for dealing with autocorrelated errors.

To know more about autocorrelation, refer here:

https://brainly.com/question/32966773#

#SPJ11

Give the general solution for the following trigonometric equation.
sin(x) 10 cos(2x) = -9

Let y =
y=
sin(x): =
r. a.=

x = where k Є Z
x = where k Є Z
x = where k Є Z
x = where k Є Z

Answers

The general solution for the trigonometric equation [tex]$\sin(x) \cdot 10 \cdot \cos(2x) = -9$[/tex]  is  [tex]$x = \frac{\pi}{6} + 2\pi k$[/tex], [tex]$x = \frac{5\pi}{6} + 2\pi k$[/tex], [tex]$x = \frac{7\pi}{6} + 2\pi k$[/tex], and [tex]$x = \frac{11\pi}{6} + 2\pi k$[/tex], where [tex]$k$[/tex] is an integer.

To solve the equation, we can rewrite it using trigonometric identities. The identity [tex]$\cos(2x) = 2\cos^2(x) - 1$[/tex] can be applied here:

[tex]$\sin(x) \cdot 10 \cdot (2\cos^2(x) - 1) = -9$[/tex]

Expanding the equation further:

[tex]$20\sin(x)\cos^2(x) - 10\sin(x) = -9$[/tex]

Now, let's substitute [tex]$\sin(x)$[/tex] with [tex]$y$[/tex]:

[tex]$20y\cos^2(x) - 10y = -9$[/tex]

Dividing the equation by [tex]$y$[/tex] (taking [tex]$y \neq 0$[/tex]):

[tex]$20\cos^2(x) - 10 = -\frac{9}{y}$[/tex]

Simplifying:

[tex]$20\cos^2(x) = -\frac{9}{y} + 10$[/tex]

Taking the square root of both sides:

[tex]$\cos(x) = \pm \sqrt{\frac{-9/y + 10}{20}}$[/tex]

Now, we need to find the possible values of [tex]$x$[/tex] for which [tex]$\cos(x)$[/tex] is equal to the above expression. Since [tex]$\cos(x)$[/tex] repeats itself after every [tex]$2\pi$[/tex] radians, we can write:

[tex]$x = \pm \arccos\left(\sqrt{\frac{-9/y + 10}{20}}\right) + 2\pi k$[/tex]

Simplifying further:

[tex]$x = \pm\left[\frac{\pi}{2} - \arcsin\left(\sqrt{\frac{-9/y + 10}{20}}\right)\right] + 2\pi k$[/tex]

Finally, substituting [tex]$y$[/tex] with [tex]$\sin(x)$[/tex], we get:

[tex]$x = \pm\left[\frac{\pi}{2} - \arcsin\left(\sqrt{\frac{-9 + 10\sin(x)}{20\sin(x)}}\right)\right] + 2\pi k$[/tex]

Simplifying the expression inside the arcsin:

[tex]$x = \pm\left[\frac{\pi}{2} - \arcsin\left(\sqrt{\frac{1 - 9\sin^2(x)}{2\sin^2(x)}}\right)\right] + 2\pi k$[/tex]

We can further simplify the expression inside the arcsin as follows:

[tex]$\sqrt{\frac{1 - 9\sin^2(x)}{2\sin^2(x)}} = \frac{\sqrt{2}\sin(x)}{\sqrt{1 - 9\sin^2(x)}}$[/tex]

Therefore, the general solution is [tex]$x = \pm\left[\frac{\pi}{2} - \arcsin\left(\frac{\sqrt{2}|\sin(x)|}{\sqrt{1 - 9\sin^2(x)}}\right)\right] + 2\pi k$[/tex].

To know more about trigonometric equations, refer here:

https://brainly.com/question/22624805#

#SPJ11


Given the radius of a circle r=6 cm and the central angle θ= 75°.
Find the arc length S of the sector
5π/2 cm
5/2cm
5π/12 cm
450 cm
Given the radius of a circle r=6 cm and the central angle θ= 75°.
Find the area of the circular sector A
15π/2 cm²
15π cm²
15π/12 cm²
1350 cm²

Answers

a. The arc length S of the sector is [tex]\frac{5\pi }{2}[/tex]cm.

b. The area of the circular sector A is [tex]\frac{15\pi }{2}[/tex]cm².

Given that,

The radius of a circle r = 6cm and the central angle θ= 75°.

In the picture we can see the circle.

a. We have to find the arc length S of the sector.

The formula for arc length is the multiplication of angle and radius.

Arc length = angle × radius

Arc length = 75° × 6

Arc length = 75([tex]\frac{\pi}{180}[/tex]) × 6

Arc length = [tex]\frac{75}{30} \times\pi[/tex]

Arc length = [tex]\frac{5\pi }{2}[/tex]cm

Therefore, The arc length S of the sector is [tex]\frac{5\pi }{2}[/tex]cm.

b. We have to find the area of the circular sector A.

The formula for the area of the circular sector A is πr²([tex]\frac{\theta}{360}[/tex])

Sector area = π(6)²([tex]\frac{75}{360}[/tex])

Sector area = π(36)([tex]\frac{75}{360}[/tex])

Sector area = π([tex]\frac{75}{10}[/tex])

Sector area = [tex]\frac{15\pi }{2}[/tex]cm²

Therefore, The area of the circular sector A is [tex]\frac{15\pi }{2}[/tex]cm².

To know more about circle visit:

https://brainly.com/question/32259085

#SPJ4

Evaluate the indefinite integral as a power series. f(t)=∫8tln(1−t)​dt f(t)=C+∑n=1[infinity]​() What is the radius of convergence R ?

Answers

To evaluate the indefinite integral f(t) = ∫8tln(1−t) dt as a power series, we can use the power series expansion for ln(1 - t): ln(1 - t) = -∑n=1[infinity] (t^n/n). We integrate term by term, keeping in mind that the constant of integration is represented by C:

f(t) = C + ∑n=1[infinity] ∫(8t)(-t^n/n) dt.

Evaluating the integral and simplifying, we have:

f(t) = C + ∑n=1[infinity] (-8/n) ∫t^(n+1) dt.

f(t) = C + ∑n=1[infinity] (-8/n) * (t^(n+2)/(n+2)).

The resulting power series for f(t) is given by f(t) = C - 4t^2 - 4t^3/3 - 4t^4/4 - ...

The radius of convergence R for this power series can be determined by using the ratio test. Applying the ratio test to the power series, we find that the limit as n approaches infinity of the absolute value of the ratio of the (n+1)-th term to the n-th term is |t|. Hence, the radius of convergence R is 1.

Learn more about the constant of integration here: brainly.com/question/33020098

#SPJ11

Kalia is planning the transportation for the senior trip. The number of students in the senior class is 463 but the trip is entirely voluntary. If each bus can seat 48 students, describe the set of the number of busses, b, they may need in set notation.

Answers

The number of students in the senior class is 463 but the trip is entirely voluntary. The set of the number of buses they may need can be described in set notation as {b | b = 10}

To determine the number of buses needed for the senior trip, we can divide the total number of students in the senior class by the seating capacity of each bus.

Number of buses, b = Total number of students / Seating capacity per bus

Number of buses, b = 463 / 48

Taking the ceiling function to account for any fractional buses:

Number of buses, b = ⌈463 / 48⌉

Calculating this value:

Number of buses, b = ⌈9.6458⌉ = 10

Therefore, the set of the number of buses they may need can be described in set notation as:

{b | b = 10}

To know more about notation refer here

https://brainly.com/question/29132451#

#SPJ11

Use the chemical reaction model with a given general solution of y=−1/kt+c​ to find the amount y as a function of t. y=65 grams when t=0;y=17 grams when f=1 Use a graphing utility to groph the function.

Answers

The specific values of k and c are determined as k = 1/48 and c = 65. The amount y is given by y = -48/t + 65.

The given general solution of the chemical reaction model is y = -1/(kt) + c. We are provided with specific values for y and t, allowing us to determine the values of k and c and find the amount y as a function of t.

Given that y = 65 grams when t = 0, we can substitute these values into the general solution:

65 = -1/(k*0) + c

65 = c

Next, we are given that y = 17 grams when t = 1, so we substitute these values into the general solution:

17 = -1/(k*1) + 65

17 = -1/k + 65

-1/k = 17 - 65

-1/k = -48

k = 1/48

Now, we have determined the values of k and c. Substituting these values back into the general solution, we get:

y = -1/(1/48 * t) + 65

y = -48/t + 65

Using a graphing utility, we can plot the function y = -48/t + 65. The x-axis represents time (t) and the y-axis represents the amount of substance (y) in grams. The graph will show how the amount of substance changes over time according to the chemical reaction model.

To learn more about graphing utility click here

brainly.com/question/1549068

#SPJ11

Use Taylor's formula for f(x,y) at the origin to find quadratic and cubic approximations of f near the origin. f(x,y)=cos(x2+y2). The quadratic approximation is ___

Answers

The quadratic approximation of f(x, y) near the origin is f(x, y) ≈ 1 - x^2 - y^2. The cubic approximation is the same as the quadratic approximation since all the third-order derivatives are zero.

To find the quadratic and cubic approximations of f(x, y) = cos(x^2 + y^2) near the origin using Taylor's formula, we need to calculate the partial derivatives and evaluate them at the origin.

The first-order partial derivatives are:

∂f/∂x = -2x sin(x^2 + y^2)

∂f/∂y = -2y sin(x^2 + y^2)

Evaluating the partial derivatives at the origin (x = 0, y = 0), we have:

∂f/∂x = 0

∂f/∂y = 0

Since the first-order partial derivatives are zero at the origin, the quadratic approximation will involve the second-order terms. The second-order partial derivatives are:

∂²f/∂x² = -2 sin(x^2 + y^2) + 4x^2 cos(x^2 + y^2)

∂²f/∂y² = -2 sin(x^2 + y^2) + 4y^2 cos(x^2 + y^2)

∂²f/∂x∂y = 4xy cos(x^2 + y^2)

Evaluating the second-order partial derivatives at the origin, we have:

∂²f/∂x² = -2

∂²f/∂y² = -2

∂²f/∂x∂y = 0

Using Taylor's formula, the quadratic approximation of f(x, y) near the origin is:

f(x, y) ≈ f(0, 0) + ∂f/∂x(0, 0)x + ∂f/∂y(0, 0)y + 1/2 ∂²f/∂x²(0, 0)x^2 + 1/2 ∂²f/∂y²(0, 0)y^2 + ∂²f/∂x∂y(0, 0)xy

Substituting the values, we get:

f(x, y) ≈ 1 - x^2 - y^2

The cubic approximation would involve the third-order partial derivatives, but since all the third-order derivatives of f(x, y) = cos(x^2 + y^2) are zero, the cubic approximation will be the same as the quadratic approximation.

Learn more about quadratic approximation here:

brainly.com/question/32562592

#SPJ11

Consider the function f : R2 → R given by f(x1, x2) = x1 ^2+ x1x2 + 4x2 + 1. Find the Taylor approximation ˆf at the point z = (1, 1). Compare f(x) and ˆf(x) for the following values of x: x = (1, 1), x = (1.05, 0.95), x = (0.85, 1.25), x = (−1, 2). Make a brief comment about the accuracy of the Taylor approximation in each case.

Answers

The Taylor approximation of the function f at the point (1, 1) is obtained by finding the first and second partial derivatives of f with respect to x1 and x2. Using these derivatives.

the Taylor approximation is given by ˆf(x) = 3 + 4(x1 - 1) + 5(x2 - 1) + (x1 - 1)^2 + (x1 - 1)(x2 - 1) + 2(x2 - 1)^2. Comparing f(x) and ˆf(x) for different values of x shows that the Taylor approximation provides a good estimate near the point (1, 1), but its accuracy decreases as we move farther away from this point.

The Taylor approximation of a function is a polynomial that approximates the function near a given point. In this case, we find the Taylor approximation of f at the point (1, 1) by calculating the first and second partial derivatives of f with respect to x1 and x2. These derivatives provide information about the rate of change of f in different directions.

Using these derivatives, we construct the Taylor approximation ˆf(x) by evaluating the derivatives at the point (1, 1) and expanding the function as a polynomial. The resulting polynomial includes terms involving (x1 - 1) and (x2 - 1), representing the deviations from the point of approximation.

When comparing f(x) and ˆf(x) for different values of x, we can assess the accuracy of the Taylor approximation. Near the point (1, 1), where the approximation is centered, the approximation provides a good estimate of the function. However, as we move farther away from this point, the approximation becomes less accurate since it is based on a local linearization of the function.

In summary, the Taylor approximation provides a useful tool for approximating a function near a given point, but its accuracy diminishes as we move away from that point.

Learn more about probability here

brainly.com/question/13604758

#SPJ11

You invested $17,000 in two accounts paying 7% and 8% annual interest, respectively. If the total inlerest eamed for the year was $1340, how much was invested at each rate? The amount invested at 7% is $ The amount irvested at 8% is $

Answers

$2000 was invested at 7% and the remaining amount, $15,000, was invested at 8%.

0.07x + 0.08(17,000 - x) = 1340

Simplifying the equation:

0.07x + 1360 - 0.08x = 1340

-0.01x = -20

x = 2000

To solve the problem, we need to set up an equation based on the information provided. Let x represent the amount invested at 7% and (17,000 - x) represent the amount invested at 8%. Since the total interest earned for the year is $1340, we can use the interest rate and the invested amounts to form an equation.

The interest earned on the amount invested at 7% is given by 0.07x, and the interest earned on the amount invested at 8% is given by 0.08(17,000 - x). Adding these two expressions together gives us the total interest earned, which is $1340.

By simplifying the equation and solving for x, we find that $2000 was invested at 7% and the remaining $15,000 was invested at 8%. This allocation of investments results in a total interest earned of $1340 for the year.

Therefore, $2000 was invested at 7% and $15,000 was invested at 8%.

To learn more about interest rate : brainly.com/question/14556630

#SPJ11


2. Identify four rectangular objects and, using
reasonable units, provide the length and width measurements for
each object.
a. Provide the reduced size of each item, using a scale
factor of 15:1.

Answers

After identifying four rectangular objects, the length and width measurements for each object are as follows:

1. A book with a length of 8 inches and a width of 5 inches.

2. A laptop with a length of 13 inches and a width of 9 inches.

3. A sheet of paper with a length of 11 inches and a width of 8.5 inches.

4. A picture frame with a length of 10 inches and a width of 8 inches.

Reducing the size of each object using a scale factor of 15:1, the new measurements for each object are as follows:

1. The book would be 0.53 inches in length and 0.33 inches in width.

2. The laptop would be 0.87 inches in length and 0.6 inches in width.

3. The sheet of paper would be 0.73 inches in length and 0.57 inches in width.

4. The picture frame would be 0.67 inches in length and 0.53 inches in width.

It's important to note that these reduced sizes are for the purpose of creating a scaled model or representation of the objects. These measurements are not intended to be used for actual size or usage of the objects.

Know more about measurements  here:

https://brainly.com/question/28848608

#SPJ11

Report your answer to the nearest dollar.

Select one:

a.$59,945

b.$659,341

c.$54,945

d.$57,691

Answers

The answer that you are looking for is d, which is $57 691.(option d)

The alternative that has the value d. $57,691 is the one that has a value that is the closest to the desired amount of $57,691 and is therefore the best choice. The result has been rounded to the closest dollar, which in this instance comes to $57,691, given that you requested that a report be rounded to the nearest dollar.

It is crucial to keep in mind that, in the absence of any further context or information, it is impossible to establish the exact meaning of the alternatives that are being presented in their individual settings. This is something that must be kept in mind at all times. However, when rounded to the nearest dollar, the answer that is closest to the specified amount is discovered in choice d, which is $57,691, and it is determined that choice d is the answer that is closest to the specified amount. This option is the response that offers the greatest degree of coherence when considered in light of the information that has been presented.

Learn more about degree of coherence here:

https://brainly.com/question/29033134

#SPJ11

The table shows how much Kim earned from 1996 to through 2004. Year Annual Salary ($) 42. 000 1996 1998 47. 500 2000 48. 900 2002 55. 000 60. 000 2004 What is the equation of a trend line that models an approximate relationship between time and Kim's annual salary? Let 1996 = 0. O A. Y = 2200x + 40000; x is the current year, y is annual salary. B. Y = 1996X + 42000; x is slope: y is annual salary. C. Y = 2200x + 40000; x is years since 1996; y is annual salary. O D. Y = 40000X + 2500; x is years since 1996; y is annual salary. ​

Answers

The equation of the trend line that models the relationship between time and Kim's annual salary is Y = 2200x + 40000.

To determine the equation of the trend line, we need to consider the relationship between time and Kim's annual salary. The table provided shows the annual salary for each corresponding year. By examining the data, we can observe that the salary increases by $2200 each year. Therefore, the slope of the trend line is 2200. The initial value or y-intercept is $40,000, which represents the salary in the base year (1996). Therefore, the equation of the trend line is Y = 2200x + 40000, where x represents the years since 1996 and y represents the annual salary.

Learn more about annual salary here:

https://brainly.com/question/13186155

#SPJ11

A heavy-equipment salesperson can contact either one or two customers per day with probability 1/3 and 2/3, respectively. Each contact will result in either no sale or a $50,000 sale, with the probabilities .9 and .1, respectively. Give the probability distribution for daily sales. Find the mean and standard deviation of the daily sales. 3

Answers

The probability distribution for daily sales:X = $0, P(X = $0) = 0.3X = $50,000, P(X = $50,000) = 0.0333 X = $100,000, P(X = $100,000) = 0.0444 and  the mean daily sales is approximately $5,333.33, and the standard deviation is approximately $39,186.36.

To find the probability distribution for daily sales, we need to consider the different possible outcomes and their probabilities.

Let's define the random variable X as the daily sales.

The possible values for X are:

- No sale: $0

- One sale: $50,000

- Two sales: $100,000

Now, let's calculate the probabilities for each outcome:

1. No sale:

The probability of contacting one customer and not making a sale is 1/3 * 0.9 = 0.3.

2. One sale:

The probability of contacting one customer and making a sale is 1/3 * 0.1 = 0.0333.

3. Two sales:

The probability of contacting two customers and making two sales is 2/3 * 2/3 * 0.1 * 0.1 = 0.0444.

Now we can summarize the probability distribution for daily sales:

X = $0, P(X = $0) = 0.3

X = $50,000, P(X = $50,000) = 0.0333

X = $100,000, P(X = $100,000) = 0.0444

To find the mean and standard deviation of the daily sales, we can use the formulas:

Mean (μ) = Σ(X * P(X))

Standard Deviation (σ) = sqrt(Σ((X - μ)^2 * P(X)))

Let's calculate the mean and standard deviation:

Mean (μ) = ($0 * 0.3) + ($50,000 * 0.0333) + ($100,000 * 0.0444) = $5,333.33

Standard Deviation (σ) = sqrt((($0 - $5,333.33)^2 * 0.3) + (($50,000 - $5,333.33)^2 * 0.0333) + (($100,000 - $5,333.33)^2 * 0.0444)) ≈ $39,186.36

Therefore, the mean daily sales is approximately $5,333.33, and the standard deviation is approximately $39,186.36.

To learn more about probability click here:

brainly.com/question/31608056

#SPJ11

If f(x)g(x)=x^2−16x−36, then which of the following is possible? f(x)=x−18 and g(x)=x+2 f(x)=x−12 and g(x)=x+3 f(x)=x+18 and g(x)=x−2 f(x)=x^2−12x and g(x)=−3x−36

Answers

The possible option is f(x) = x - 12 and g(x) = x + 3.

Given that f(x)g(x) = x^2 - 16x - 36, we need to find the values of f(x) and g(x) that satisfy this equation.

Let's substitute the possible option f(x) = x - 12 and g(x) = x + 3 into the equation and check if it holds true:

f(x)g(x) = (x - 12)(x + 3)

          = x^2 - 12x + 3x - 36

          = x^2 - 9x - 36

Comparing this with the given equation x^2 - 16x - 36, we can see that they are the same.

Therefore, the option f(x) = x - 12 and g(x) = x + 3 is possible.

To know more about substitution in equations, refer here:

https://brainly.com/question/1132161#

#SPJ11

T/F: an example of a weight used in the calculation of a weighted index is quantity consumed in a base period.

Answers

False. The quantity consumed in a base period is not an example of a weight used in the calculation of a weighted index.

In the calculation of a weighted index, a weight is a factor used to assign relative importance or significance to different components or categories included in the index. These weights reflect the contribution of each component to the overall index value. The purpose of assigning weights is to ensure that the index accurately reflects the relative importance of the components or categories being measured.

An example of a weight used in a weighted index could be market value, where the weight is determined based on the market capitalization of each component. This means that components with higher market values will have a greater weight in the index calculation, reflecting their larger impact on the overall index value.

On the other hand, the quantity consumed in a base period is not typically used as a weight in a weighted index. Instead, it is often used as a reference point or benchmark for comparison. For example, in a price index, the quantity consumed in a base period is used as a constant quantity against which the current prices are compared to measure price changes.

Therefore, the statement that the quantity consumed in a base period is an example of a weight used in the calculation of a weighted index is false.

To learn more about weight, click here:

brainly.com/question/19053239

#SPJ1

Find the equation of the tangent to the curve y = c (x) 4x
at x = 0.2.

Answers

To find the equation of the tangent to the curve y = c(x) * 4x at x = 0.2, we need to determine the slope of the tangent at that point and then use the point-slope form of a linear equation.

First, let's find the derivative of the function y = c(x) * 4x with respect to x:

dy/dx = d/dx [c(x) * 4x]

The derivative of a function represents the rate at which the function's value is changing with respect to its independent variable. It gives the slope of the tangent line to the graph of the function at any given point.

The derivative of a function f(x) is denoted as f'(x) or dy/dx. It can be calculated using various differentiation rules and techniques, depending on the form of the function.

Visit here to learn more about derivative brainly.com/question/29144258

#SPJ11

Assume for a competitive firm that MC=AVC at $8,MC=ATC at $12, and MC =MR at $7. This firm will Multiple Choice
a. maximize its profit by producing in the short run.
b. minimize its losses by producing in the short run.
c. shut down in the short run.
d. realize a loss of $5 per unit of output.

Answers

The firm will shut down in the short run due to the inability to cover total costs with the marginal cost (MC) below both the average total cost (ATC) and the marginal revenue (MR). Thus, the correct option is :

(c) shut down in the short run.

To analyze the firm's situation, we need to consider the relationship between costs, revenues, and profits.

Option a. "maximize its profit by producing in the short run" is not correct because the firm is experiencing losses. When MC is below ATC, it indicates that the firm is making losses on each unit produced.

Option b. "minimize its losses by producing in the short run" is also not correct. While producing in the short run can help reduce losses compared to not producing at all, the firm is still unable to cover its total costs.

Option d. "realize a loss of $5 per unit of output" is not accurate based on the given information. The exact loss per unit of output cannot be determined solely from the given data.

Now, let's discuss why option c. "shut down in the short run" is the correct choice.

In the short run, a firm should shut down when it cannot cover its variable costs. In this scenario, MC is equal to AVC at $8, indicating that the firm is just able to cover its variable costs. However, MC is below both ATC ($12) and MR ($7), indicating that the firm is unable to generate enough revenue to cover its total costs.

By shutting down in the short run, the firm avoids incurring further losses associated with fixed costs. Although it will still incur losses equal to its fixed costs, it prevents additional losses from adding up.

Therefore, the correct option is c. "shut down in the short run" as the firm cannot cover its total costs and is experiencing losses.

To learn more about profits visit : https://brainly.com/question/1078746

#SPJ11

Conslder a set of data in which the sample mean is 26.8 and the sample standard deviation is 6.4. Calculate the t-score given that x a 30.6. Round your answer to two decinal places. Answer How to enter yout answer fopens in new window)

Answers

The t-score is 0.59.The t-score is a measure of how far a particular data point is from the mean, in terms of standard deviations. It is calculated using the following formula:

t = (x - μ) / σ

where:

x is the data point

μ is the mean

σ is the standard deviation

In this case, we are given that the mean is 26.8 and the standard deviation is 6.4. We are also given that the data point x is 30.6. So, the t-score is calculated as follows:

t = (30.6 - 26.8) / 6.4 = 0.59

The t-score of 0.59 means that the data point x is 0.59 standard deviations above the mean. In other words, x is slightly higher than average.

Here is a Python code that you can use to calculate the t-score:

Python

import math

def t_score(mean, standard_deviation, x):

 t = (x - mean) / standard_deviation

 return t

mean = 26.8

standard_deviation = 6.4

x = 30.6

t = t_score(mean, standard_deviation, x)

print("The t-score is", round(t, 2))

This code will print the t-score of 0.59.

Learn more about sample mean here:

brainly.com/question/33323852

#SPJ11

The temperature at a point (x,y) on a flat metal plate is given by T(x,y)=77/(5+x2+y2), where T is measured in ∘C and x,y in meters. Find the rate of change of themperature with respect to distance at the point (2,2) in the x-direction and the (a) the x-direction ___ ×∘C/m (b) the y-direction ___ ∘C/m

Answers

The rate of change of temperature with respect to distance in the x-direction at the point (2,2) can be found by taking the partial derivative of the temperature function T(x,y) with respect to x and evaluating it at (2,2).

The rate of change of temperature with respect to distance in the x-direction is given by ∂T/∂x. We need to find the partial derivative of T(x,y) with respect to x and substitute x=2 and y=2:

∂T/∂x = ∂(77/(5+x^2+y^2))/∂x

To calculate this derivative, we can use the quotient rule and chain rule:

∂T/∂x = -(2x) * (77/(5+x^2+y^2))^2

Evaluating this expression at (x,y) = (2,2), we have:

∂T/∂x = -(2*2) * (77/(5+2^2+2^2))^2

Simplifying further:

∂T/∂x = -4 * (77/17)^2

Therefore, the rate of change of temperature with respect to distance in the x-direction at the point (2,2) is -4 * (77/17)^2 °C/m.

(b) To find the rate of change of temperature with respect to distance in the y-direction, we need to take the partial derivative of T(x,y) with respect to y and evaluate it at (2,2):

∂T/∂y = ∂(77/(5+x^2+y^2))/∂y

Using the same process as above, we find:

∂T/∂y = -(2y) * (77/(5+x^2+y^2))^2

Evaluating this expression at (x,y) = (2,2), we have:

∂T/∂y = -(2*2) * (77/(5+2^2+2^2))^2

Simplifying further:

∂T/∂y = -4 * (77/17)^2

Therefore, the rate of change of temperature with respect to distance in the y-direction at the point (2,2) is also -4 * (77/17)^2 °C/m.

Learn more about quotient rule here:

brainly.com/question/30278964

#SPJ11

Evaluate the integral 0∫1​[(9te6t2)i+(4e−9t)j+(8)k]dt  0∫1​[(9te6t2)i+(4e−9t)j+(8)k]dt=(i+(__)j+(___∣k

Answers

The integral evaluates to (i + (3/4)(e^6 - 1)j - (4/9)e^(-9) + 4/9)k.To evaluate the integral ∫₀¹[(9te^(6t^2))i + (4e^(-9t))j + 8k] dt, we need to integrate each component separately.

∫₀¹(9te^(6t^2)) dt: To integrate this term, we can use the substitution u = 6t^2, du = 12t dt. When t = 0, u = 0, and when t = 1, u = 6. ∫₀¹(9te^(6t^2)) dt = (9/12) ∫₀⁶e^u du = (3/4) [e^u] from 0 to 6 = (3/4) (e^6 - e^0) = (3/4) (e^6 - 1). ∫₀¹(4e^(-9t)) dt: This term can be integrated directly using the power rule for integrals. ∫₀¹(4e^(-9t)) dt = [-4/9 * e^(-9t)] from 0 to 1 = [-4/9 * e^(-9) - (-4/9 * e^0)] = [-4/9 * e^(-9) + 4/9] ∫₀¹(8) dt: This term is a constant, and its integral is equal to the constant multiplied by the interval length.

∫₀¹(8) dt = 8 [t] from 0 to 1 = 8(1 - 0) = 8. Putting it all together: ∫₀¹[(9te^(6t^2))i + (4e^(-9t))j + 8k] dt = [(3/4) (e^6 - 1)]i + [-4/9 * e^(-9) + 4/9]j + 8k. Therefore, the integral evaluates to (i + (3/4)(e^6 - 1)j - (4/9)e^(-9) + 4/9)k.

To learn more about integral click here: brainly.com/question/31433890

#SPJ11




Use the remainder theorem to find ( P(3) ) for ( P(x)=2 x^{4}-4 x^{3}-4 x^{2}+3 ). Specifically, give the quotient and the remainder for the associated division and the value of ( P(3) ).

Answers

Using the remainder theorem, the value of P(3) for the polynomial P(x) = 2x^4 - 4x^3 - 4x^2 + 3 is 48. The quotient and remainder for the associated division are not required.

Explanation:

The remainder theorem states that if a polynomial P(x) is divided by x - a, then the remainder is equal to P(a).

In this case, we want to find P(3), which means we need to divide the polynomial P(x) by x - 3 and find the remainder.

Performing the division, we get:

        2x^3 - 10x^2 - 22x + 57

x - 3 ) 2x^4 - 4x^3 - 4x^2 + 3

        2x^4 - 6x^3

                    2x^3 - 22x^2

                    2x^3 - 6x^2

                              -16x^2 + 3

                              -16x^2 + 48x

                                        45x + 3

                                        45x - 135

                                                 138

Therefore, the remainder is 138, and P(3) = 138. The quotient is not necessary for finding P(3).

Learn more about probability here

brainly.com/question/13604758

#SPJ11

Question is down below.

Answers

The mistake Husam made include the following: A. 16.8 is 168 tenths not 168 hundredths.

What is a place value?

In Mathematics, a place value can be defined as a numerical value (number) which denotes a digit based on its position in a given number and it includes the following:

TenthsHundredthsThousandthsUnitTensHundredsThousands.

Generally speaking, the place value of the digit "8" in 16.8 is tenth and as such, we would rewrite the numerical value as follows;

16.8 = 168/10

Read more on place value here: brainly.com/question/569339

#SPJ1

Other Questions
A 5.5 th coupon bearing bond pays interest semi-annually and has a maturity of 17 years. If the current price of the bond is $1087.30, what is the yield to maturity of this bond? (Rswer to the nearest hundredth of a percent, e.g. 12.34\%) i need help with this question please help me 1-List and discuss the standards applicable to review engagements. 2. How do the general standards applicable to review engagements differ fromgenerally accepted auditing standards. which of the following groups did not contribute significant sacred works outside the calvinist tradition during this early period in american music making? Let Q be an orthogonal matrix with an eigenvalue 1=1. Let x be an eighenvector beloinging to 1. Show that x is also an eigenvector of QT Mr. Robin opened Rubel's Carpet Cleaners on March 1, 2022. During March, the following transactions were completed. Mar. 1: Invested Tk 30,000 cash in the business. Mar. 2: Purchased used Truck for Tk 7,000, paying Tk 3,500 cash and the balance on account. Mar. 3: Purchased cleaning supplies for Tk 2,000 on account. Mar. 5: Paid Tk 1,200 cash on one-year insurance policy effective March 1. Mar. 14: Billed customers Tk 5,000 for cleaning services. Mar. 18: Paid Tk 1,500 cash on amount owed on Truck. Mar. 20: Paid Tk 2,000 cash for employee salaries. Mar. 21: Collected Tk 3,000 cash from customers billed on March 14. Mar. 28: Billed customers Tk 2,500 for cleaning services. Mar. 29: Incurred transpiration expenses of Tk 1,000 but not paid to Twinkle Travel. Mar. 31: Paid advertising expenses of Tk 500 . Mar. 31: Withdrew Tk 2000 cash for personal use. Requirements: 1) Journalize the March transactions. 2) Prepare necessary Ledger Accounts. 3) Prepare a Trial Balance at March 31 4) Journalize the following adjustments and prepare an adjusted Trial Balance: 5 (1) Earned but unbilled revenue at March 31 was Tk 500. (2) Depreciation on equipment for the month was Tk 200. (3) One-twelfth of the insurance expired. (4) An inventory count shows Tk 1000 of cleaning supplies on hand at March 31 . (5) Accrued but unpaid employee salaries were Tk 700. 5) Prepare the Income Statement and Owner's Equity Statement for March and a 10 classified Financial Position at March 31 6) Journalize Closing Entries. 5 Note 1: Complete all the requirements. You will get data of one requirement from the previous requirement. So, without doing one requirement, the next one is not possible. Note 2: You must use a formula while adding or subtracting the monetary figure. You also should use Cell Link while using or transferring the same amount from one cell to another cell. NPV and IRR Benson Designs has prepared the following estimates for a long-term project it is considering. The initial investment is $39,840, and the project is expected to yield after-tax cash inflows of $7,000 per year for 9 years. The firm has a cost of capital of 11%. a. Determine the net present value (NPV) for the project. b. Determine the internal rate of return (IRR) for the project. c. Would you recommend that the firm accept or reject the project? a. The NPV of the project is $ (Round to the nearest cent.) in ________, branded materials become component parts of other branded products. A) family brandingB) aggregated brandingC) umbrella brandingD) manufacturer brandingE) ingredient branding Assume we are going to use the PMT function to calculate a monthly.payment due at the end of each month. The annual interest rate on the loan is 6% and it will cover 10 years. Which of the following statements is TRUE? O The 2 nd argument is the number of periods and the number of periods within this PMT function would be 120 . O The last argument within this PMT function is the [Type] argument and the argument would be the number 1 . O The 1st argument is the number of periods and the number of periods within this PMT function would be 10 . O The 1st argument is the rate and the rate within the PMT function would be 1%. O The 1st argument is the rate and the rate within the PMT function would be 5\%. On the domain of (2,2), for which of the following values of x will sin(x)=csc(x)? Choose all answers that apply.^2^23/23/20 Regiochemical and Stereochemical Outcomes for E2 Reactions Which of the following alkyl bromides will give only one alkene upon treatment with a strong base? (S)-2-bromohexane (R)-2-bromohexane 1-bromohexane 2-bromo-2-methylpentane Because of the rise of communication technology, observers have labeled today's era thea. age of anxiety.b. age of entertainment.c. age of access.d. age of intrusion.e. age of privacy. County Health Rankings and Roadmaps is a collaboration between the Robert Wood Johnson Foundation and the University of Wisconsin Population Health Institute. The County Health Rankings and Roadmaps compares the health of nearly all counties in the United States to others within its own state and supports coalitions tackling the social, economic and environmental factors that influence health. The annual rankings provide a revealing snapshot of how health is influenced by where we live, learn, work and play. As the Rankings provide a starting point for change, the Roadmaps provide guidance and tools to understand the data and strategies that communities can use to move from education to action.Go the County Health Rankings website and select Middlesex County, NJ in the Overall Rankings in Health Outcomes section to see how it fares among other counties sin the State. Your county means where you lived before you started Kean University.Write 600-800 words, reflecting on your findings and thoughts of how your countrys health is ranked. For example, you can say something like "I am not surprised that X County ranked #2 on the list because . ", "I am surprised that Y County has high rates of smoking because .", When I was growing up, X County had" etc. a child has an acute infection causing lower airway obstruction. In January, Cullumber Tool & Die accumulated factory labour costs of $6,900. During January, time tickets show that the factory labour of $6,900 was used as follows: Job 1$2,400, Job 2$1,780, Job 3$1,570, and general factory use $1,150. Prepare a summary journal entry to record factory labour used. (List all debit entries before credit entries. Credit account titles are automatically indented when amount is entered. Do not indent manually-) how can criteria be used to help define the problem after lipolysis, what happens to the glycerol portion of the triglyceride? Assume that your neighbour smokes, while you hate "passive smoking" (secondhand smoke makes you sick). Suppose your neighbour has the property right to the air. In order to reach an efficient outcome through private bargaining, ____a. Your neighbour will make compensation to you in order to smoke. b. You will make compensation to your neighbour to let him smoke less. the texture of renaissance music is chiefly monophonic. homophonic. polyphonic. heterophonic. Hi-Tek Manufacturing Inc. makes two types of industrial component parts -- the B300 and the T500. An absorption costing income statement for the most recent period is shown below:Hi-Tek Manufacturing Inc.Income StatementSales $ 2,100,000Cost of goods sold 1,600,000Gross margin 500,000Selling and administrative expenses 550,000Net operating loss $ (50,000)Hi-Tek produced and sold 70,000 units of B300 at a price of $20 per unit and 17,500 units of T500 at a price of $40 per unit. The companys traditional cost system allocates manufacturing overhead to products using a plantwide overhead rate and direct labor dollars as the allocation base. Additional information relating to the companys two product lines is shown below:B300 T500 TotalDirect materials $ 436,300 $ 251,700 $ 688,000Direct labor $ 200,000 $ 104,000 304,000Manufacturing overhead 608,000Cost of goods sold $ 1,600,000The company has created an activity-based costing system to evaluate the profitability of its products. Hi-Teks ABC implementation team concluded that $50,000 and $100,000 of the companys advertising expenses could be directly traced to B300 and T500, respectively. The remainder of the selling and administrative expenses was organization-sustaining in nature. The ABC team also distributed the companys manufacturing overhead to four activities as shown below:Manufacturing ActivityActivity Cost Pool (and Activity Measure) Overhead B300 T500 TotalMachining (machine-hours) $ 213,500 90,000 62,500 152,500Setups (setup hours) 157,500 75 300 375Product-sustaining (number of products) 120,000 1 1 2Other (organization-sustaining costs) 117,000 NA NA NATotal manufacturing overhead cost $ 608,000 1. Compute the product margins for the B300 and T500 under the companys traditional costing system.B300 T500 TotalProduct margin 2. Compute the product margins for B300 and T500 under the activity-based costing system. (Negative product margins should be indicated by a minus sign. Round your intermediate calculations to 2 decimal places.)B300 T500 TotalProduct margin 3. Prepare a quantitative comparison of the traditional and activity-based cost assignments. (Round your intermediate calculations to 2 decimal places and "Percentage" answer to 1 decimal place. (i.e. .1234 should be entered as 12.3))