Consider the single-factor completely randomized sin-
gle factor experiment shown in Problem 3.4. Suppose that this
experiment had been conducted in a randomized complete
block design, and that the sum of squares for blocks was 80.00.
Modify the ANOVA for this experiment to show the correct
analysis for the randomized complete block experiment.

Answers

Answer 1

The critical value for each F-test depends on the desired significance level and the degrees of freedom.

To modify the analysis of variance (ANOVA) for the randomized complete block (RCB) design, we incorporate the additional factor of blocks into the model. The ANOVA table for the RCB design includes the following components:

1. Source of Variation: Blocks

  - Degrees of Freedom (DF): Number of blocks minus 1

  - Sum of Squares (SS): 80.00 (given)

  - Mean Square (MS): SS divided by DF

  - F-value: MS divided by the Mean Square Error (MSE) from the Error term (within-block variation)

2. Source of Variation: Treatments (Same as in the original ANOVA)

  - Degrees of Freedom (DF): Number of treatments minus 1

  - Sum of Squares (SS): Calculated sum of squares for treatments

  - Mean Square (MS): SS divided by DF

  - F-value: MS divided by MSE

3. Source of Variation: Error (Same as in the original ANOVA)

  - Degrees of Freedom (DF): Total number of observations minus the total number of treatments

  - Sum of Squares (SS): Calculated sum of squares for error

  - Mean Square (MS): SS divided by DF

4. Source of Variation: Total (Same as in the original ANOVA)

  - Degrees of Freedom (DF): Total number of observations minus 1

  - Sum of Squares (SS): Calculated sum of squares for total

The F-values for both the blocks and treatments can be used to test the null hypotheses associated with each factor. The critical value for each F-test depends on the desired significance level and the degrees of freedom.

To learn more about variance click here:

brainly.com/question/30822057

#SPJ11


Related Questions

A 16 kg mass travelling to the right at 5 m/s collides with a 4 kg mass travelling to the left also at 5 m/s. If the collision is perfectly inelastic, find the speed of the objects after the collision. 2 m/s 20 m/s 0 m/s 3 m/s

Answers

The velocity of the objects after the collision is 4 m/s.Option B is correct.The collision is inelastic. This implies that the objects stick together after the collision.

To find the velocity of the objects after the collision, we use the Law of Conservation of Momentum.

Law of Conservation of Momentum states that the total momentum of a system of objects is constant, provided no external forces act on the system.So, the total momentum before the collision = total momentum after the collision.

Initial momentum of the system = (mass of the first object x velocity of the first object) + (mass of the second object x velocity of the second object)Initial momentum of the system

= (16 kg x 5 m/s) + (4 kg x -5 m/s)

Initial momentum of the system = 80 kg m/s

Final momentum of the system = (mass of the first object + mass of the second object) x velocity of the system

After the collision, the two objects stick together. So, we can use the formula v = p / m, where v is velocity, p is momentum, and m is mass.

Final mass of the system = mass of the first object + mass of the second object

Final mass of the system = 16 kg + 4 kgFinal mass of the system = 20 kg

Final velocity of the system = 80 kg m/s ÷ 20 kg

Final velocity of the system = 4 m/s

Therefore, the velocity of the objects after the collision is 4 m/s.Option B is correct.

To know more about collision visit:

https://brainly.com/question/13138178

#SPJ11

Solve the system of equations using Laplace, (10points) y + x + y = 0 x' + y' = 0 Where y(0) = 0, y'(0) = 0, x(0) = 1

Answers

To solve the given system of equations using Laplace transforms, let's denote the Laplace transforms of the variables y and x as Y(s) and X(s) respectively.

The Laplace transform of a derivative can be calculated using the formula: L{f'(t)} = sF(s) - f(0), where F(s) represents the Laplace transform of f(t).

Given equations:

1) y + x + y = 0

2) x' + y' = 0

Taking the Laplace transform of equation 1:

L{y + x + y} = L{0}

Using linearity and differentiation properties of Laplace transforms:

L{y} + L{x} + L{y} = 0

Y(s) + X(s) + Y(s) = 0

Taking the Laplace transform of equation 2:

L{x' + y'} = L{0}

Using linearity and differentiation properties of Laplace transforms:

sX(s) + sY(s) - x(0) - y(0) = 0

sX(s) + sY(s) - 1 = 0

We also have the initial conditions:

y(0) = 0, y'(0) = 0, x(0) = 1

Applying the initial conditions to the Laplace transformed equations:

Y(0) + X(0) + Y(0) = 0           (equation A)

sX(s) + sY(s) - 1 = 0             (equation B)

Substituting Y(0) = 0 from equation A into equation B:

sX(s) + sY(s) - 1 = 0

Since x(0) = 1, X(0) = 1/s. Substituting this into the equation:

s(1/s) + sY(s) - 1 = 0

1 + sY(s) - 1 = 0

sY(s) = 0

Y(s) = 0

Now, substituting Y(s) = 0 back into equation A:

0 + X(0) + 0 = 0

1/s = 0

This equation is not possible, which indicates that there is no unique solution to the system of equations using Laplace transforms.

To know more about Laplace transforms visit:

https://brainly.com/question/31689149

#SPJ11

The hypotheses are: H0: the supplier does not meet the quality standards H1: the supplier does meet the quality standards. Obviously if H0 is right, the officer would reject the supplier, and if H1 is right, the officer would begin ordering from the supplier. But the decision has to be made based on the random selection mentioned earlier. Which of the following is the type I error in this case? The officer orders items from a supplier of poor quality products The officer orders items from a supplier who makes good quality products The officer rejects a supplier of poor quality products The officer rejects a supplier who makes good quality products

Answers

The type I error in this case is: The officer rejects a supplier who makes good quality products.

In hypothesis testing, a type I error occurs when the null hypothesis (H0) is true, but it is incorrectly rejected in favor of the alternative hypothesis (H1). In this scenario, the null hypothesis states that the supplier does not meet the quality standards (poor quality products). The alternative hypothesis states that the supplier does meet the quality standards (good quality products).

If the officer incorrectly rejects the null hypothesis (H0), it means they mistakenly conclude that the supplier does not meet the quality standards and, as a result, rejects the supplier. However, in reality, the supplier actually produces good quality products.

This decision is a type I error because the officer has made a false rejection based on incorrect evidence. The type I error in this case is the officer rejecting a supplier who makes good quality products.

To read more about error, visit:

https://brainly.com/question/28771966

#SPJ11

Determine g(x+a)−g(x) for the following function. g(x)=−x^2 −6x Answrer g(x+a)−g(x)=

Answers

g(x+a)−g(x) for the following function g(x)=−x^2 −6x  g(x+a) - g(x) = -2ax - a^2 - 6a - 6x

To determine g(x+a) - g(x) for the function g(x) = -x^2 - 6x, we substitute x+a into the function and then subtract g(x):

g(x+a) - g(x) = [-(x+a)^2 - 6(x+a)] - [-(x^2 - 6x)]

Expanding the expressions inside the brackets:

= [-(x^2 + 2ax + a^2) - 6x - 6a] - [-(x^2 - 6x)]

Now distribute the negative sign inside the first bracket:

= -x^2 - 2ax - a^2 - 6x - 6a + x^2 - 6x

Simplifying the expression:

= -2ax - a^2 - 6a - 6x

So, g(x+a) - g(x) = -2ax - a^2 - 6a - 6x

To know more about function refer here:

https://brainly.com/question/30721594#

#SPJ11

Logarithm rules:
a, b, and c are numbers in the following six equations. For each problem, a-f, solve for for x; show your work.

a) ln(a*c*x) = b
b) ln(a/x) = b+c
c) ln(a/x3) = b/a
d) ln(3x) = a
e) ln(xb) = c
f) b = a* ex

Answers

(A) x = e^(b - ln(a) - ln(c))

(B) x = e^(ln(a) - b - c)

(C) x = e^[(1/3)ln(a) - (b/a)]

(D) x = e^(a - ln(3))

(E) x = e^(c/b)

(F) x = ln(b/a)

a) ln(a*c*x) = b

ln(a) + ln(c) + ln(x) = b (logarithm rule: ln(ab) = ln(a) + ln(b))

ln(x) = b - ln(a) - ln(c)

x = e^(b - ln(a) - ln(c)) (logarithm rule: x = e^ln(x))

b) ln(a/x) = b+c

ln(a) - ln(x) = b + c (logarithm rule: ln(a/b) = ln(a) - ln(b))

ln(x) = ln(a) - b - c

x = e^(ln(a) - b - c)

c) ln(a/x^3) = b/a

ln(a) - 3ln(x) = b/a (logarithm rule: ln(a/b^c) = ln(a) - c*ln(b))

ln(x) = (1/3)ln(a) - (b/a)

x = e^[(1/3)ln(a) - (b/a)]

d) ln(3x) = a

ln(3) + ln(x) = a (logarithm rule: ln(ab) = ln(a) + ln(b))

ln(x) = a - ln(3)

x = e^(a - ln(3))

e) ln(x^b) = c

b*ln(x) = c (logarithm rule: ln(a^b) = b*ln(a))

ln(x) = c/b

x = e^(c/b)

f) b = a* e^x

x = ln(b/a)

Know more about Logarithm here:

https://brainly.com/question/30226560

#SPJ11

Use the price-demand equation p+0.01x=80,0≤p≤80. Find all values of p for which demand is elastic. The demand is elastic on (Type your answer in interval notation).

Answers

The demand is elastic for p < 60.

To determine the values of p for which the demand is elastic, we need to analyze the price-demand equation p + 0.01x = 80, where p represents the price and x represents the quantity demanded. Elasticity of demand measures the responsiveness of quantity demanded to changes in price. Mathematically, demand is considered elastic when the absolute value of the price elasticity of demand is greater than 1.

The price elasticity of demand is given by the formula:

E = (dQ / Q) / (dp / p)

where E represents the price elasticity of demand, dQ / Q represents the percentage change in quantity demanded, and dp / p represents the percentage change in price.

In this case, we can rewrite the price-demand equation as:

x = 80 - p / 0.01

To determine the elasticity of demand, we need to find the derivative of x with respect to p:

dx / dp = -1 / 0.01 = -100

Since the derivative is a constant value of -100, the demand is constant regardless of the price, indicating that the demand is perfectly inelastic.

Therefore, there are no values of p for which the demand is elastic.

Learn more about derivatives here:

brainly.com/question/29144258

#SPJ11

Information is given about a polynomial function f(x) whose coefficients are real numbers. Find the remaining zeros of f. Degree 6; zeros: 3,4+7i,−8−3i,0 The remaining zeros of f are (Use a comma to separate answers as needed. Type your answer in the form a+bi.)

Answers

The remaining zeros of f. Degree 6; zeros: 3,4+7i,−8−3i,0 The remaining zeros of f are  the remaining zeros of f(x) are 4-7i and 0.

Since the given polynomial function, f(x), has a degree of 6, and the zeros provided are 3, 4+7i, -8-3i, and 0, we know that there are two remaining zeros. Let's find them:

1. We know that if a polynomial has complex zeros, the complex conjugates are also zeros. Thus, if 4+7i is a zero, then 4-7i must be a zero as well.

2. The zero 0 is also given.

Therefore, the remaining zeros of f(x) are 4-7i and 0.

In summary, the remaining zeros of f(x) are 4-7i and 0.

To know more about Degree refer here:

https://brainly.com/question/364572#

#SPJ11

Practice problem for your contingency table. There are 223 people in our data pool. 106 are men and 117 are females. When we consider whether men or women like a regular PC or not (meaning they prefer a MAC), there are more men than women who prefer a aregular PC. Only 40 men like a MAC. 30 women like a PC. Set up your contingency table and be sure that you have your table labeled appropriately to include your factorsoficomparison, your totalnumbers, and your A,B,C and D.

Answers

There are 223 people in our data pool. 106 are men and 117 are females. the minimum number of women who prefer a MAC (D) is 37

To set up the contingency table, let's consider two factors: gender (men and women) and preference for a regular PC or MAC. The table will include the total numbers and the variables A, B, C, and D.

In this table:

- A represents the number of men who prefer a regular PC.

- B represents the number of men who prefer a MAC.

- C represents the number of women who prefer a regular PC.

- D represents the number of women who prefer a MAC.

We are given that there are 106 men and 117 women in total, so Total = 106 + 117 = 223.

Also, we know that 40 men like a MAC (B = 40) and 30 women like a regular PC (C = 30).

To find the missing value, the number of women who prefer a MAC (D), we subtract the known values from the total: Total - (A + B + C + D) = 223 - (A + 40 + 30 + D) = 223 - (A + D + 70).

Since there are more men than women who prefer a regular PC, we can assume A > C. Therefore, A + D + 70 > 106, which implies D > 36.

Since the minimum number of women who prefer a MAC (D) is 37, the contingency table will look as follows:

Please note that the actual values of A and D may vary, but the table will follow this general structure based on the given information.

To know more about data refer here:

https://brainly.com/question/29117029#

#SPJ11

Find the coefficient a of the term in the expansion of the binomial.
Binomial Term
(9x−y)^10 ax^2y^8
a=

Answers

The coefficient "a" in the term (9x - y)^10 that has the exponent of x^2y^8 is given by the binomial coefficient C(10, 2).

To find the coefficient "a," we use the binomial theorem, which states that in the expansion of (9x - y)^10, each term is given by the formula C(10, k) * (9x)^(10-k) * (-y)^k, where C(n, k) represents the binomial coefficient.

In this case, we want the term with the exponent of x^2y^8, so k = 8. Plugging in the values, we have C(10, 2) = 10! / (2! * (10 - 2)!) = 45. Therefore, the coefficient "a" is 45.

For more questions like Coefficient click the link below:

https://brainly.com/question/1594145

#SPJ11







Find the sum. \[ 89+85+81+\ldots-291 \] The sum is

Answers

We get the sum of the series as -9600. The total number of terms, n using the formula of nth term which is a_n = a + (n-1)d

The series to be evaluated is given by:\[89 + 85 + 81 + \cdots - 291\]

Here, the first term, a = 89 and the common difference, d = -4

Thus, the nth term is given by:

[a_n = a + (n-1) \times d\]

Substituting the values of a and d, we get:

[a_n = 89 + (n-1) \times (-4)\]

Simplifying, we get:

\[a_n = 93 - 4n\]

For the last term, we have:

\[a_n = -291\]

Substituting, we get:

\[-291 = 93 - 4n\]

Solving for n, we get:

\[n = \frac{93 - (-291)}{4} = 96\]

Thus, there are 96 terms in the series.

To find the sum, we can use the formula for the sum of an arithmetic series:

\[S_n = \frac{n}{2} \times (a + a_n)\]

Substituting the values of n, a and a_n, we get:

\[S_n = \frac{96}{2} \times (89 - 291) = -9600\]

Hence, the sum of the series is -9600.

Substituting the values in the above formula we get the sum of the series as -9600.

To know more about the arithmetic series visit:

https://brainly.com/question/14203928

#SPJ11

Which of the following statement is TRUE? Select one: a. A negative net exposure position in foreign currency implies that the Fl will make a gain if the foreign currency appreciates b. All of the statements are true. c. A negative net exposure position in foreign currency implies that the FI will make a loss if the foreign currency appreciates d. A positive net exposure position in foreign currency implies that the FI will make a gain if the foreign currency depreciates e. Off-balance sheet hedging involves higher initial costs compared to on-balance sheet hedging

Answers

A negative net exposure position in foreign currency means that a Financial Institution will experience a loss if the foreign currency appreciates.

A net exposure position in foreign currency refers to the overall amount of foreign currency assets and liabilities held by a Financial Institution. When a Financial Institution has a negative net exposure position, it means that it owes more in foreign currency liabilities than it holds in foreign currency assets. In this case, if the foreign currency appreciates (increases in value relative to the domestic currency), the Financial Institution will need to pay more in domestic currency to fulfill its foreign currency obligations. Consequently, the Financial Institution will incur a loss.

On the other hand, a positive net exposure position (option D) implies that the Financial Institution will make a gain if the foreign currency depreciates (decreases in value relative to the domestic currency) because it will receive more domestic currency when converting its foreign currency assets.

Option A is incorrect because a negative net exposure position implies a loss, not a gain if the foreign currency appreciates. Option B is incorrect because not all of the statements are true. Option E is unrelated to the question and therefore not applicable.

Learn more about liabilities  : brainly.com/question/15006644

#SPJ11

If sint= 1/5 , and t is in quadrant I, find the exact value of sin(2t),cos(2t), and tan(2t) algebraically without solving for t. Enclose numerators and denominators in parentheses. For example, (a−b)/(1+n). sin(2t)= cos(2t)= tan(2t)=

Answers

The values of sin 2t, cos 2t and tan 2t are as follows:

sin(2t) = (2√24)/25

cos(2t) = 119/25

tan(2t) = 2(√24) / 23

Given that sint= 1/5 , and t is in quadrant I.To find sin 2t, we know that,2 sin t cos t = sin (t + t)Or sin 2t = 2 sin t cos t

Now, sin t = 1/5 (given),And, cos t = √(1 - sin²t) = √(1 - 1/25) = √24/5. Thus, sin 2t = 2 sin t cos t= 2 (1/5) (√24/5) = 2√24/25 = (2√24)/25. This is the required value of sin 2t. Now, to find cos 2t, we use the following formula:

cos 2t = cos²t - sin²t

Here, we already know the value of sin t and cos t, and so we can directly substitute the values and get the answer.Cos 2t = cos²t - sin²t= [√(24/5)]² - (1/5)²= 24/5 - 1/25= (119/25)This is the required value of cos 2t. To find tan 2t, we use the following formula:

tan 2t = (2 tan t)/(1 - tan²t)

Here, we already know the value of sin t and cos t, and so we can directly substitute the values and get the answer.tan t = sin t/cos t = (1/5) / (√24/5) = 1/(√24) = (√24)/24tan²t = 24/576 = 1/24

Now, substituting these values in the formula for tan 2t, we get:

tan 2t = (2 tan t)/(1 - tan²t)= 2 [(√24)/24] / [1 - 1/24]= 2(√24) / 23

This is the required value of tan 2t. Hence, the values of sin 2t, cos 2t and tan 2t are as follows:

sin(2t) = (2√24)/25

cos(2t) = 119/25

tan(2t) = 2(√24) / 23

To know more about cos refer here:

https://brainly.com/question/28165016

#SPJ11

Find the slope of the tangent line to the given polar curve at the point specified by the value of θ. r=sin(θ)+4cos(θ),θ=2π​.

Answers

The slope of the tangent line to the polar curve r = sin(θ) + 4cos(θ) at θ = 2π is 0.

To find the slope of the tangent line to the polar curve, we need to find the derivative of r with respect to θ and evaluate it at θ = 2π.

Differentiating the equation r = sin(θ) + 4cos(θ) with respect to θ using the chain rule, we have:

dr/dθ = d(sin(θ))/dθ + d(4cos(θ))/dθ

     = cos(θ) - 4sin(θ)

Evaluating dr/dθ at θ = 2π:

dr/dθ|θ=2π = cos(2π) - 4sin(2π)

          = 1 - 4(0)

          = 1

The slope of the tangent line is equal to dr/dθ. Therefore, the slope of the tangent line to the polar curve at θ = 2π is 1.

To learn more about derivative  click here

brainly.com/question/29144258

#SPJ11

Why can't you argue cause and effect from correlational data? You don't really know whether A was causing B, or B was causing A. a. You only know that a relationship between the two variables b. It is entirely possible that some third, unmeasured variable influenced both A and B, so that the apparent relationship between A and B was really just illusory. c. Both a. and b. are reasons why we can't infer cause and effect from a correlation

Answers

The correct answer is c. Both a. and b. are reasons why we can't infer cause and effect from a correlation.

Correlational data can only show us that there is a relationship between two variables, but it cannot tell us which variable is causing the other. This is because there are other factors that could be influencing the relationship between the two variables, and we cannot be sure which one is the cause and which one is the effect.

For example, let's say that there is a positive correlation between ice cream sales and crime rates. We cannot conclude that ice cream sales are causing crime or that crime is causing people to buy more ice cream. It is possible that some other factors, such as the weather, are influencing both ice cream sales and crime rates, and that the relationship between the two variables is just a coincidence.

Therefore, to establish a cause-and-effect relationship between two variables, we need to conduct an experiment where we can manipulate one variable and observe the effect on the other variable while controlling for other factors that could influence the relationship.

Learn more about " correlation" : https://brainly.com/question/28175782

#SPJ11

Cannon Precision Instruments makes an automatic electronic flash. The estimated marginal profit associated with producing and selling theses electronic flashes is P′(x)=−0.002x+10 dollars per unit per month when the production level is x units per month. Cannon's fixed cost for producing and selling these electronic flashes is $12,000/month. What is the maximum monthly profit when selling these electronic flashes? Round your answer to the nearest whole number and justify your solution by showing the appropriate. Calculate work.

Answers

The maximum monthly profit when selling these electronic flashes is $35,000.

To find the maximum monthly profit when selling electronic flashes, we need to determine the production level that maximizes the profit. The profit function P(x) is the integral of the marginal profit function P'(x) with respect to x, given the fixed cost. Given: P′(x) = -0.002x + 10 (marginal profit function); Fixed cost = $12,000/month. To calculate the profit function P(x), we integrate the marginal profit function: P(x) = ∫(-0.002x + 10) dx = -0.001x^2 + 10x + C. To find the value of the constant C, we use the given fixed cost: P(0) = -0.001(0)^2 + 10(0) + C = $12,000. C = $12,000.

So, the profit function becomes: P(x) = -0.001x^2 + 10x + 12,000. To find the production level that maximizes the profit, we take the derivative of the profit function and set it equal to zero: P'(x) = -0.002x + 10 = 0; x = 5,000. Substituting this value back into the profit function, we find the maximum monthly profit: P(5,000) = -0.001(5,000)^2 + 10(5,000) + 12,000 = $35,000. Therefore, the maximum monthly profit when selling these electronic flashes is $35,000.

To learn more about  profit  click here: brainly.com/question/23883528

#SPJ11

The motion of a mass-spring system with damping is governed by x"+2x+3x = sin(1) + 6(1-2) x(0)=0, x '(0) = 0 => a) Please explain the physical meaning of this equation. For instance, the mess is 1 kg, spring stiffness is 3N/m, etc. b) Solve this equation.

Answers

Numerical methods or approximation techniques such as the method of undetermined coefficients or Laplace transforms can be used to obtain an approximate solution.

a) The given equation represents the motion of a mass-spring system with damping. Here is the physical interpretation of the equation:

The mass (m): It indicates the amount of matter in the system and is given as 1 kg in this case. The mass affects the inertia of the system and determines how it responds to external forces.

Spring stiffness (k): It represents the strength of the spring and is given as 3 N/m in this case. The spring stiffness determines how much force is required to stretch or compress the spring. A higher value of k means a stiffer spring.

Damping coefficient (c): The damping term, 2x', represents the damping force in the system. The coefficient 2 determines the strength of damping. Damping opposes the motion of the system and dissipates energy, resulting in the system coming to rest over time.

External force (sin(1) + 6(1-2)): The term sin(1) represents a sinusoidal external force acting on the system, and 6(1-2) represents a constant force. These external forces can affect the motion of the mass-spring system.

The equation combines the effects of the mass, spring stiffness, damping, and external forces to describe the motion of the system over time.

b) To solve the given equation, we need to find the solution for x(t). However, since the equation is nonlinear and nonhomogeneous, it is not straightforward to provide an analytical solution. Numerical methods or approximation techniques such as the method of undetermined coefficients or Laplace transforms can be used to obtain an approximate solution.

To know more about coefficients, visit:

https://brainly.com/question/1594145

#SPJ11

Given the following returns, what is the variance? Year 1 = 16%;
year 2 = 6%; year 3 = -25%; year 4 = -3%.
.0344
.0209
.0306
.0297
.0268

Answers

The variance for the given data set: Year 1 = 16%; Year 2 = 6%; Year 3 = -25%; Year 4 = -3% is 0.0344.

The variance given the following returns:

Year 1 = 16%, Year 2 = 6%, Year 3 = -25%, Year 4 = -3% is 0.0344.

In probability theory, the variance is a statistical parameter that measures how much a collection of values fluctuates around the mean.

Variance, like other statistical measures, is used to describe data.

A variance is a square of the standard deviation, which is a numerical term that determines the amount of dispersion for a collection of values.

Variance provides a numerical estimate of how diverse the values are.

If the data points are tightly clustered, the variance is small.

If the data points are spread out, the variance is large.For a given data set, we may use the following formula to compute variance:

[tex]$$\sigma^2 = \frac{\sum_{i=1}^{N}(x_i-\mu)^2}{N-1}$$[/tex]

Where [tex]$$\sigma^2$$[/tex] is variance, [tex]$$\sum_{i=1}^{N}$$[/tex] is the sum of the data set, [tex]$$x_i$$[/tex] is each data point, [tex]$$\mu$$[/tex] is the sample mean, and [tex]$$N-1$$[/tex] is the sample size minus one.

In the above question, we will calculate the variance for the given data set:

Year 1 = 16%; Year 2 = 6%; Year 3 = -25%; Year 4 = -3%.

[tex]$$\mu=\frac{(16+6+(-25)+(-3))}{4}=-1.5$$[/tex]

Using the formula mentioned above,

[tex]$$\sigma^2 = \frac{\sum_{i=1}^{N}(x_i-\mu)^2}{N-1}$$$$[/tex]

=[tex]\frac{[(16-(-1.5))^2 + (6-(-1.5))^2 + (-25-(-1.5))^2 + (-3-(-1.5))^2]}{4-1}$$[/tex]

After solving this expression,

[tex]$$\sigma^2=0.0344$$[/tex]

For more related questions on variance:

https://brainly.com/question/14116780

#SPJ8

SHSU would ike to test whethes there is any difference in salaries for business professors (group 1) and aiminal ustice professors (group 2). The university randomly selects a sample of 48 business professors and finds their average salary to be 5∈431. The university also seiects a random sample of 49 criminal justice profeseors and finds their average salary is 572788 . The population thandard deviations are known and ocual to $9000 for bus iness professors. respectively $7500 for criminal fustice professors. The university wants to teft if thete is a direrence between the salaries of these 2 goverps, using a significance lovel of 5% Compute the test statistic needed for performing this test. Round your answer wo 2 decinals it needed SHSU would like to construct a confidence interval for the difference in salaries for business professors (group 1) and criminal justice professors (group 2). The university randomly selects a sample of 41 business professors and finds their average salary to be 581153 The university also selects a random sample of 49 criminal justice professors and finds their average salary is $62976. The population standard deviations are known and equal to $9000 for business professors, respectively $7500 for criminal justice prolessors. The university wants to estimate the difference in salarles between the fwo groups by constructing a 95% confidence interval

Answers

The confidence interval is $57006 ± $4624.68.

The given information in the problem is as follows:SHSU wants to test whether there is any difference in salaries for business professors (group 1) and criminal justice professors (group 2).A sample of 48 business professors is selected.The average salary of business professors is 5∈431.A sample of 49 criminal justice professors is selected.The average salary of criminal justice professors is $572788.

The population standard deviations are known and equal to $9000 for business professors and $7500 for criminal justice professors.The university wants to test if there is a difference between the salaries of these 2 groups, using a significance level of 5%.We are asked to compute the test statistic needed for performing this test and round our answer to 2 decimals.It is a two-tailed test as we want to check if there is a difference between two groups of professors.

Hence, the level of significance is α = 5/100 = 0.05. The degrees of freedom (df) is given by the following formula:df = n1 + n2 - 2Here, n1 = 48 (sample size of group 1), n2 = 49 (sample size of group 2).Thus,df = 48 + 49 - 2 = 95.Using the given formula, the test statistic is calculated as follows:t = (x1 - x2 - D) / [(s1²/n1) + (s2²/n2)]^0.5Where,x1 = 5∈431 (sample mean of group 1)x2 = 572788 (sample mean of group 2)s1 = $9000 (population standard deviation of group 1)s2 = $7500 (population standard deviation of group 2)n1 = 48 (sample size of group 1)n2 = 49 (sample size of group 2)D = 0 (null hypothesis).

On substituting the given values in the formula,t = (5∈431 - 572788 - 0) / [(9000²/48) + (7500²/49)]^0.5t = -1.96The test statistic needed for performing this test is -1.96 (rounded to 2 decimals).Now, we need to find the confidence interval for the difference in salaries for business professors and criminal justice professors.

The given information in the problem is as follows:SHSU wants to construct a confidence interval for the difference in salaries for business professors (group 1) and criminal justice professors (group 2).A sample of 41 business professors is selected.The average salary of business professors is $581153.A sample of 49 criminal justice professors is selected.The average salary of criminal justice professors is $62976.

The population standard deviations are known and equal to $9000 for business professors, respectively $7500 for criminal justice professors.The university wants to estimate the difference in salaries between the two groups by constructing a 95% confidence interval.We are asked to compute the 95% confidence interval.

It is given that the population standard deviations are known and equal to $9000 for business professors, respectively $7500 for criminal justice professors. The level of significance (α) is 5% which means that the confidence level is 1 - α = 0.95.The formula for the confidence interval is given by:CI = (x1 - x2) ± tα/2 [(s1²/n1) + (s2²/n2)]^0.5Where,CI = Confidence Intervalx1 = $581153 (sample mean of group 1)x2 = $62976 (sample mean of group 2)s1 = $9000 (population standard deviation of group 1)s2 = $7500 (population standard deviation of group 2)n1 = 41 (sample size of group 1)n2 = 49 (sample size of group 2)tα/2 is the t-value at α/2 level of significance and degrees of freedom (df = n1 + n2 - 2).

Here,tα/2 = t0.025 = 1.96 (at 0.025 level of significance, df = 41 + 49 - 2 = 88).On substituting the given values in the formula,CI = (581153 - 62976) ± 1.96 [(9000²/41) + (7500²/49)]^0.5CI = $57006 ± $4624.68The confidence interval is $57006 ± $4624.68.

Learn more about business here,

https://brainly.com/question/18307610

#SPJ11

Mike and his friends bought cheese waters for $4 per packet and chocolate wafers for $3 per packet at a camival. They spent a total of $36 to buy a total of 10 packets of waters of the two varieties
Part A: Write a system of equations that can be solved to find the number of packets of cheese wafers and the number of packets of chocolate wafers that Mike and his friends bought at the camival Define the variables used in the
equations (4 points)
Part B: How many packets of chocolate wafers and cheese wafers did they buy? Explain how you got the answer and why you selected a particular method to get the answer

Answers

The system of equations is:

x + y = 10

4x + 3y = 36

The solution is x = 6 and y = 4.

How to write the system of equations?

A)

Let's define the variables:

x = number of cheese wafers.y = number of chocolate wafers.

We can write the system of equations:

x + y = 10

4x + 3y = 36

Isolate x on the first equation to get:

x = 10 - y

Replace that in the other one:

4*(10 - y) + 3y = 36

40 - 4y + 3y = 36

40 - y = 36

40 - 36 = y

4 = y

And thus, the value of x is:

x = 10 - y = 10 - 4 = 6

They bought 6 cheese wafers and 4 chocolate ones.

Learn more about systems of equations at:

https://brainly.com/question/13729904

#SPJ1

Find all solutions (x,y), if any solutions exist:
x-y =3
x+y = 4
5x-y = 10

Answers

The system has a unique solution, and the values of x and y that satisfy all three equations simultaneously are x = 7/2 and y = 1/2.

To find the solutions to the system of equations:

x - y = 3 ---(1)

x + y = 4 ---(2)

5x - y = 10 ---(3)

We can solve the system using various methods, such as substitution or elimination. Let's use the elimination method here:

Adding equation (1) and equation (2) eliminates the variable y:

(x - y) + (x + y) = 3 + 4

2x = 7

x = 7/2

Substituting the value of x into equation (2):

7/2 + y = 4

y = 4 - 7/2

y = 8/2 - 7/2

y = 1/2

The solution to the system of equations is (x, y) = (7/2, 1/2).

The system has a unique solution, and the values of x and y that satisfy all three equations simultaneously are x = 7/2 and y = 1/2.

For more such questions on solution

https://brainly.com/question/17145398

#SPJ8

Classify the quadrilateral with the name that best describes it.

A. Trapezoid

B. Rhombus

C. Quadrilateral

D. Rectangle

Answers

A trapezoid is a quadrilateral with one pair of parallel sides, a rhombus is a quadrilateral with four congruent sides and opposite angles that are congruent, a rectangle is a quadrilateral with four right angles and opposite sides are congruent while opposite sides are parallel, while a quadrilateral is a broad name used to describe a four-sided polygon.

Quadrilaterals are four-sided polygons, which come in a variety of shapes. When it comes to classifying a quadrilateral, you should look for attributes like side lengths, angles, and parallel sides. Among the provided options, A. Trapezoid, B. Rhombus, C. Quadrilateral, and D. Rectangle are all quadrilaterals. But each has unique features that differentiate them. Let's look at each of them closely:

A trapezoid is a quadrilateral that has one pair of parallel sides. Its parallel sides are also called bases, while the other two non-parallel sides are called legs. A trapezoid is further classified into isosceles trapezoid and scalene trapezoid. In an isosceles trapezoid, the legs are congruent, while, in a scalene trapezoid, the legs are not congruent.

A rhombus is a quadrilateral with four congruent sides and opposite angles that are congruent. In other words, it is a special type of parallelogram with all sides equal. Because of its congruent sides, a rhombus also has perpendicular diagonals that bisect each other at a right angle.

The name Quadrilateral is used to describe a four-sided polygon. This term is a broad name for any shape with four sides, so it is not an appropriate answer to this question.

A rectangle is a quadrilateral with four right angles (90°). Opposite sides of a rectangle are parallel, and its opposite sides are congruent. Its diagonals are congruent and bisect each other at the center point. Because of its congruent diagonals, a rectangle is also a type of rhombus, but its angles are all right angles.

In conclusion, a trapezoid is a quadrilateral with one pair of parallel sides, a rhombus is a quadrilateral with four congruent sides and opposite angles that are congruent, a rectangle is a quadrilateral with four right angles and opposite sides are congruent while opposite sides are parallel, while a quadrilateral is a broad name used to describe a four-sided polygon.

Know more about quadrilateral here,

https://brainly.com/question/29934291

#SPJ11

Assume that a generic linear form for annual income is INCOME =a+b1​
EDUC+b2​
FEMALE+ b3​
MARRIED where; INCOME: annual income (thousands) EDUC: the total number of education years FEMALE is a dummy variable for gender ( 1 for females, 0 for males) MARRIAGE is a dummy variable for being married (1 for being married, 0 for others) A regression is performed, and it yields the results that a=10 and b1​
=5 and b2​
=−8, and b3​
=9. John is a single male with 15 years of schooling. What is his predicted annual income?

Answers

The predicted annual income for John, a single male with 15 years of schooling, is $85,000.

Based on the given linear form for annual income, the equation is:

INCOME = a + b1 * EDUC + b2 * FEMALE + b3 * MARRIED

We are provided with the values of the coefficients:

a = 10

b1 = 5

b2 = -8

b3 = 9

To calculate John's predicted annual income, we substitute the corresponding values into the equation:

INCOME = 10 + 5 * 15 + (-8) * 0 + 9 * 0

INCOME = 10 + 75 + 0 + 0

INCOME = 85

Since the income is measured in thousands, the predicted annual income for John would be $85,000. However, since John is single and the dummy variable for being married is 0, the last term in the equation (b3 * MARRIED) becomes zero, hence not affecting the predicted income. Therefore, we can simplify the equation to:

INCOME = 10 + 5 * 15 + (-8) * 0

INCOME = 10 + 75 + 0

INCOME = 85

So, John's predicted annual income is $85,000.

Learn more about Annual Income

brainly.com/question/28341339

#SPJ11

Please answer the following questions, justifying your answers: a. Consider a market represented by an m×n payoff matrix A and an n×1 price vector S. If A is not invertible, how many linearly independent assets are there? b. Consider a market in which one of the state price vectors is ψ=[−1​0​1​]′. Is it true that in this market there is definitely arbitrage? c. Consider the following statement: If there exists a state price vector with some non-positive components, then there is arbitrage. Is this statement true? d. The annual log true return of a stock is i.i.d. normally distributed with mean and variance 0.12 and 0.12, respectively. You want to write a 6-period binomial model to price a derivative that expires in 6 months and whose payoffs depend on the price of this stock. What will be the high and low per-period return for the stock (i.e., Ru​ and Rd​ in the notation used in class)

Answers

a. If the payoff matrix A is not invertible, it implies that there are linearly dependent columns in the matrix. In the context of a market, each column of the payoff matrix represents the payoffs of a particular asset.

Linear dependence means that there is redundancy or a linear combination of assets. Therefore, if A is not invertible, it indicates that there are fewer linearly independent assets compared to the total number of assets represented by the columns of A.

b. The presence of the state price vector ψ=[−101]′ does not guarantee the existence of arbitrage in the market. Arbitrage opportunities arise when it is possible to construct a portfolio of assets with zero initial investment and positive future payoffs in all states of the world. In this case, the state price vector indicates the relative prices of different states of the world. While the state price vector ψ=[−101]′ implies different prices for different states, it does not provide enough information to determine whether it is possible to construct an arbitrage portfolio. Additional information about the payoffs and prices of assets is required to assess the existence of arbitrage opportunities.

c. The statement "If there exists a state price vector with some non-positive components, then there is arbitrage" is true. In a market with non-positive components in a state price vector, it implies that it is possible to construct a portfolio with zero initial investment and positive future payoffs in at least one state of the world. This violates the absence of arbitrage principle, which states that it should not be possible to make riskless profits without any initial investment. Thus, the existence of non-positive components in a state price vector indicates the presence of arbitrage opportunities in the market.

d. Given that the annual log true return of the stock is i.i.d. normally distributed with mean and variance 0.12, we can use a binomial model to estimate the high and low per-period returns for the stock. The binomial model divides the time period into smaller intervals, and the per-period returns are based on the up and down movements of the stock price.

To price a derivative expiring in 6 months, we can use a 6-period binomial model. Since the derivative expires in 6 months, and each period in the model represents one month, there will be six periods. The high per-period return (Ru) occurs when the stock price increases, and the low per-period return (Rd) occurs when the stock price decreases. The per-period return is calculated as the exponential of the standard deviation of the log returns, which in this case is 0.12.

The high per-period return (Ru) can be calculated as exp(0.12 * sqrt(1/6)), where sqrt(1/6) represents the square root of the fraction of one period (1 month) in 6 months. The low per-period return (Rd) can be calculated as exp(-0.12 * sqrt(1/6)). These calculations provide the estimated values for the high and low per-period returns of the stock, considering the given mean and variance of the annual log true return.

Learn more about market represented here:

brainly.com/question/32411797

#SPJ11

9. Loretta is going to Canada and wants to exchange $215 US dollars for Canadian dollars. If the exchange rate is $1=1.09035. Loretta will receive $234.40 Canadian dollars. True False 10. The symbol for the metric volume unit liter is A) Li B) L C) Lit D) I 11. The metric unit is the base unit for measuring weight or mass.

Answers

9. False, Loretta will receive $233.63 Canadian dollars.

B) L

False, the metric unit for measuring weight or mass is the kilogram (kg).

B. Explanation:

9. Loretta wants to exchange $215 US dollars to Canadian dollars. If the exchange rate is $1 = 1.09035, the amount of Canadian dollars Loretta will receive can be calculated by multiplying the US dollar amount by the exchange rate: $215 * 1.09035 = $234.40.

However, this is not the correct answer. The correct amount of Canadian dollars Loretta will receive is $215 * 1.09035 = $233.63.

The symbol for the metric volume unit liter is B) L.

The metric unit for measuring weight or mass is not the liter (L), but rather the kilogram (kg).

For more questions like Exchange click the link below:

https://brainly.com/question/31063963

#SPJ11

The population P (in thousands) of a city in China from 1990 through 2015 can be modeled by P(t)=67.2e0.0467t, where t is the time in years with t=0 corresponding to 1990 . Question : To the nearest hundred, find the population in 1990 Question To the nearest hundred, find the population in 2000 Question :To the nearest hundred, find the population in 2010 Question Explain why, on your uploaded paperwork, the data do not fit a linear model, Type in space below if the data fits or not the linear model. Only type fits or only type not. Only type your answer in lower case letters. Question Use the model to estimate when the population will exceed 200,000 .

Answers

The population is estimated to exceed 200,000 after approximately 15.49 years, or around 15 years and 6 months.

To find the population in 1990, we substitute t = 0 into the population model:

P(0) = [tex]67.2e^(0.0467 * 0)[/tex]

P(0) = [tex]67.2e^0[/tex]

P(0) = 67.2 * 1

P(0) = 67.2

Therefore, the population in 1990 was approximately 67,200 (to the nearest hundred).

To find the population in 2000, we substitute t = 2000 - 1990 = 10 into the population model:

[tex]P(10) = 67.2e^(0.0467 * 10)[/tex]

Using a calculator, we find P(10) ≈ 109,160.77

Therefore, the population in 2000 was approximately 109,200 (to the nearest hundred).

To find the population in 2010, we substitute t = 2010 - 1990 = 20 into the population model:

[tex]P(20) = 67.2e^(0.0467 * 20)[/tex]

Using a calculator, we find P(20) ≈ 177,019.84

Therefore, the population in 2010 was approximately 177,000 (to thenearest hundred).

On the uploaded paperwork, the data does not fit a linear model.

The data does not fit a linear model because the population growth is exponential, not linear. The population is increasing exponentially over time, as indicated by the exponential term [tex]e^(0.0467t)[/tex] in the population model. In a linear model, the population would increase at a constant rate over time, which is not the case here.

To estimate when the population will exceed 200,000, we set the population model equal to 200:

200 =[tex]67.2e^(0.0467t)[/tex]Divide both sides by 67.2:e^(0.0467t) = 200/67.2

Take the natural logarithm of both sides to solve for t:

[tex]ln(e^(0.0467t)) = ln(200/67.2)[/tex]

0.0467t = ln(200/67.2)

Solve for t:

t ≈ ln(200/67.2) / 0.0467

Using a calculator, we find t ≈ 15.49

Therefore, the population is estimated to exceed 200,000 after approximately 15.49 years, or around 15 years and 6 months.

Learn more about statistics here:

https://brainly.com/question/30915447

#SPJ11

Minimize the function f(x,y,z)=x2+y2+z2 under the constraint 3x+y−z=5.

Answers

The method of Lagrange multipliers can be used to minimize a function f(x, y, z) subject to a constraint. In this case, the function f(x, y, z) = x^2 + y^2 + z^2 is minimized subject to the constraint 3x + y - z = 5.

We start by defining the Lagrangian function L(x, y, z, λ) = f(x, y, z) - λ(3x + y - z - 5), where λ is the Lagrange multiplier. To find the minimum, we set the partial derivatives of L with respect to x, y, z, and λ equal to zero and solve the resulting equations simultaneously.

By differentiating L and equating the derivatives to zero, we obtain the following equations:

∂L/∂x = 2x - 3λ = 0,

∂L/∂y = 2y - λ = 0,

∂L/∂z = 2z + λ = 0,

and the constraint equation 3x + y - z = 5.

Solving this system of equations will give us the values of x, y, z, and λ that minimize the function f(x, y, z) under the given constraint.

To know more about Lagrangian function here: brainly.com/question/33166274

#SPJ11

The amount of money needed to send all adults in the United States to college for four years. Estimate yearly tuition to be about $18,000. Assume there are about 250 million adults in the United States. trillion

Answers

The estimated amount of money needed to send all adults in the United States to college for four years can be calculated by multiplying the number of adults by the yearly tuition and the duration of the program. With an assumed yearly tuition of $18,000 and approximately 250 million adults in the United States, the estimate would be in the trillions of dollars.

To calculate the estimated amount, we multiply the yearly tuition of $18,000 by the number of adults in the United States, which is approximately 250 million. Then, we multiply this result by the duration of the program, which is four years. This gives us the total amount of money needed to send all adults to college for four years.

Using the given information, the estimated amount would be:

$18,000 (tuition per year) * 250,000,000 (number of adults) * 4 (duration) = $18,000,000,000,000 (trillions of dollars).

Therefore, the estimated amount needed to send all adults in the United States to college for four years is in the trillions of dollars.

Learn more about number here: brainly.com/question/10547079

#SPJ11

In a geometric series, S_6=-42, S_7 = 86, and S_b=-170. Find the first term.
Select one:
a. 3
b. 2
c. -2

Answers

The first term of the geometric series is -2 which gives the final value of the sum of the series approximately -36.857. Option C is the correct answer.

To find the first term of a geometric series, we can use the formula for the sum of a geometric series:

Sₙ = a × (1 - rⁿ) / (1 - r),

where Sₙ is the sum of the first n terms, a is the first term, and r is the common ratio.

We are given the following information:

S₆ = -42,

S₇ = 86,

S₈ = -170.

Using the formula, we can set up the following equations:

-42 = a × (1 - r²) / (1 - r), (equation 1)

86 = a × (1 - r³) / (1 - r), (equation 2)

-170 = a × (1 - r⁴) / (1 - r). (equation 3)

From equation 2, we can rearrange it to isolate a:

a = 86 × (1 - r) / (1 - r³). (equation 4)

Substituting equation 4 into equations 1 and 3:

-42 = (86 × (1 - r) / (1 - r³)) × (1 - r²) / (1 - r), (equation 5)

-170 = (86 × (1 - r) / (1 - r³)) × (1 - r⁴) / (1 - r). (equation 6)

Simplifying equations 5 and 6 further:

-42 × (1 - r) × (1 - r²) = 86 × (1 - r³), (equation 7)

-170 × (1 - r) × (1 - r⁴) = 86 × (1 - r³). (equation 8)

Solving equations 7 and 8 simultaneously, we find that r = -2.

Substituting r = -2 into equation 4:

a = 86 × (1 - (-2)) / (1 - (-2)³),

a = 86 × (1 + 2) / (1 - 8),

a = 86 × 3 / (-7),

a = -258 / 7.

The approximate value of a is -36.857.

Learn more about geometric series at

https://brainly.com/question/30264021

#SPJ4

The question is -

In a geometric series, S6=−42, S7=86, and S8=−170. Find the first term. Select one: a. 3 b. 2 c. −2 d. −3

Rounding. Round all the way: 349,210.77. a. 400,000 b. 350,000 c. 300,000 d. 349,211 Clear my choice Question 1 (10 marks) Which investment gives you a higher return: 9% compounded monthly or 9.1% compounded quarterly? Question 2 (10 marks)Rounding. Round all the way: 349,210.77. a. 400,000 b. 350,000 c. 300,000 d. 349,211 Clear my choice Question 1 (10 marks) Which investment gives you a higher return: 9% compounded monthly or 9.1% compounded quarterly? Question 2 (10 marks)

Answers

The investment with a 9.1% annual interest rate compounded quarterly would give a higher return compared to the investment with a 9% annual interest rate compounded monthly.

Investment provides a higher return, we need to calculate the future value of both investments and compare them.

For the investment with a 9% annual interest rate compounded monthly, we can use the formula A = P(1 + r/n)^(nt), where A is the future value, P is the principal amount, r is the annual interest rate (as a decimal), n is the number of times interest is compounded per year, and t is the number of years.

For the investment with a 9% annual interest rate compounded monthly, we have r = 0.09/12, n = 12, and t = 1. Plugging these values into the formula, we get A = P(1 + 0.09/12)^(12*1).

For the investment with a 9.1% annual interest rate compounded quarterly, we have r = 0.091/4, n = 4, and t = 1. Plugging these values into the formula, we get A = P(1 + 0.091/4)^(4*1).

By comparing the future values calculated from the two formulas, it can be determined that the investment with a 9.1% annual interest rate compounded quarterly would provide a higher return.

Learn more about decimal : brainly.com/question/30958821

#SPJ11

An urn contains n balls labelled 1 to n. Balls are drawn one at a time and then put back in the urn. Let M denote the number of draws before some ball is chosen more than once. Find the probability mass function of M. Hint for part (b): First find the distribution of M for a few small values of n and then try to identify the pattern for general n.

Answers

Let the probability mass function of the number of draws before some ball is chosen more than once be given by the function p(m;n).

SolutionFirst, let's consider the base case: $n = 2$Then the probability mass function is:p(1;2) = 0 (obviously)p(2;2) = 1 (after the second draw, the ball chosen must be the same as the first one)Now consider $n = 3$. We have two possibilities:either the ball drawn the second time is the same as the first one, which can be done in $1$ way, with probability $\frac{1}{3}$,or it isn't, in which case we need to draw a third ball, which must be the same as one of the first two.

This can be done in $2$ ways, with probability $\frac{2}{3} \cdot \frac{2}{3} = \frac{4}{9}$.Therefore:p(1;3) = 0p(2;3) = $\frac{1}{3}$p(3;3) = $\frac{4}{9}$Now we will prove that:p(m; n) = $\frac{n!}{n^{m}}{m-1\choose n-1}$.The proof uses the following counting argument. Suppose you have $m$ balls and $n$ labeled bins. The number of ways to throw the balls into the bins such that no bin is empty is ${m-1\choose n-1}$, and there are $n^{m}$ total ways to throw the balls into the bins.

Therefore the probability that you can throw $m$ balls into $n$ bins without leaving any empty bins is ${m-1\choose n-1}\frac{1}{n^{m-1}}$.For $m-1$ draws, we need to choose $n-1$ balls from $n$ balls, and then we need to choose which of these $n-1$ balls appears first (the remaining ball will necessarily appear second).

Hence the probability mass function is:$p(m; n) = \begin{cases} 0 & m \leq 1 \\ {n-1\choose n-1}\frac{1}{n^{m-1}} & m = 2 \\ {n-1\choose n-1}\frac{1}{n^{m-1}} + {n-1\choose n-2}\frac{n-1}{n^{m-1}} & m \geq 3 \end{cases}$We can simplify this by using the identity ${n-1\choose k-1} + {n-1\choose k} = {n\choose k}$. So we have:$p(m; n) = \begin{cases} 0 & m \leq 1 \\ {n\choose n}\frac{1}{n^{m-1}} & m = 2 \\ {n\choose n}\frac{1}{n^{m-1}} + {n\choose n-1}\frac{1}{n^{m-2}} & m \geq 3 \end{cases}$As required.

Learn more about Probability here,https://brainly.com/question/13604758

#SPJ11

Other Questions
In 2021, the market value of all final goods and services produced is $100 billion and the market value of all final goods and services sold is 550 billion. Which of the following is true in 20217Answers A-EA GDP is $100 billion.B GDP is $50 billion.Inventories fell by $50 billion.D (A) and (C).E (B) and (C). In which of the following company types would the manager combine cost of goods sold, irrentory, and purchases into one budger? A. Service B. Merchandising C. Manufacturing D. All of the above Is your current (or past) employer going through risk responseand contingency planning?Why or why not? How do you interpret a p-value in the context of a word problem? Please provide a few examples! anomie or strain theory argues that deviant behavior is most common among members of the middle class. list the 6 possible genotypes of the four blood types The universal computer company uses a newly developed a1 chip in the manufacturer of their tablet computers. The estimated annual demand for this chip is 12,000 units. It is estimated that the cost to place an order is $75, and the holding cost for each chip is $20 per year. The company operates 320 days per year. Use the information in scenario 9. 3. What is the economic order quantity for the a1 chip? group of answer choices greater than 200 units but less than or equal to 250 units greater than 250 units but less than or equal to 300 units greater than 300 units less than or equal to 200 units 5. Using the open economy model developed in class, explain with a diagram, the impact of the following : (a) Government generates a budget deficit. (b) Decrease in business confidence. (c) Increase in tariffs in our trading partners. (d) "Capital flight". A transverse sinusoidal wave of wave vector k=4.38rad/m is traveling on a stretched string. The transverse speed of a particle on the string at x=0 is 45.5 m/s. What is the speed of the wave in m/s, when it displaces 2.0 cm from the mean position? Provided the displacement is 4.0 cm when the transverse velocity is zero. Which object is most likely to be judged as being the lightest (if a person picks up each of them)? A. a five-pound block of lead B. a shoebox filled with five pounds of scrap metal C. a small duffel bag containing five pounds of clothing D. a very large cardboard box that weighs five pounds empty In Activity 2, which of the respirometers serves as a control? Explain your answer! Why was it the control? You should write at least 3 sentences to explain this. Respirometer A contains germinated beans. respirometer B contains dormant beans and plastic beads respirometer C contains plastic beads. 1. Identify and explain TWO (2) unethical business practices that the Clothing Disney store company is/was engaged in10 Marks2Discuss each issue from theperspectives of ethical theories orprinciples. You have to use differenttheory or perspective for eachthe ethical issue you have identified inNo.2.10 Marks3Suggest how the Clothing Disney store company can be more ethical in the future.Each issue identified in No, 2 musthave ONE (1) solution. Therefore,you will have TWO (2) Solutions.10 Marks4Conclusion and References5 Marks TRUE / FALSE."Lean practices and activity analyses are not suitable foradaptation to service businesses or administrative processes. Bertha, a licensed insurance agent, is meeting her client to discuss his critical illness insurance needs. Out of the following list, what factor is least important to be taken into consideration in the fact-finding interview? Select one: a. Family health history of the applicant b. Age of the applicant c. Health of the applicant d. Sources of earned income A monopoly producing a chip at a marginal cost of $6 per unit faces a demand elasticity of 2. Which price should it charge to optimize its profits? $10 per unit $12 per unit $8 per unit $6 per unit The average consumer at a firm with market power has an inverse demand function of P=102Q. The firm's cost function is C=2Q. If the firm engages in optimal two-part pricing, it will earn profits of $16 $32 $64 $10 Find the mean and variance of A = Pn i=1 Xi . Find the mean and variance of B = 1 n Pn i=1 Xi . Which distribution does C = n(B 1) have when n is "large"? sincere questions are attempts to send a message rather than receive one. true or false 1. The blood platelet counts of a group of women have a bell-shaped distribution with a mean of 281.4 and a standard deviation of 26.2. What is the approximate percentage of women with (or at least what percentage of women have) platelet counts within two standard deviations of the mean?2. The body temperatures of a group of healthy adults have a bell-shaped distribution with a mean of 98.99 oF and a standard deviation of 0.43 oF. What is the approximate percentage of body temperatures (or at least what percent of body temperatures are) within three standard deviations of the mean?3. The mean of a set of data is 103.81 and its standard deviation is 8.48. Find the z score for a value of 44.92.4. A weight of 268 pounds among a population having a mean weight of 134 pounds and a standard deviation of 20 pounds. Determine if the value is unusual. Explain. Enter the number that is being interpreted to arrive at your conclusion rounded to the nearest hundredth. What are the receptors found at the neuroglandular junctions in the parasympathetic division?A. nicotinic receptorsB. muscarinic receptorsC. adrenergic receptorsD. Alpha 1 receptors James Fromholtz is considering investing in a newly formedinvestment fund. The fund objective is to acquire new mortgageesecurities