What is the intensity (in W/m2) of an electromagnetic wave with
a peak electric field strength of 220 V/m?
____ W/m2

Answers

Answer 1

The intensity of the electromagnetic wave with a peak electric field strength of 220 V/m is approximately 1.2306 x 10^(-5) W/m².

The intensity (I) of an electromagnetic wave can be calculated using the formula:

I = (c * ε₀ / 2) * E₀²

Where:

I is the intensity of the wave in watts per square meter (W/m²)

c is the speed of light in a vacuum (approximately 3 x 10^8 m/s)

ε₀ is the vacuum permittivity (approximately 8.85 x 10^-12 F/m)

E₀ is the peak electric field strength in volts per meter (V/m)

Plugging in the values:

E₀ = 220 V/m

I = (3 x 10^8 m/s * 8.85 x 10^-12 F/m / 2) * (220 V/m)²

Simplifying the equation:

I = 1.2306 x 10^(-5) W/m²

Therefore, the intensity of the electromagnetic wave with a peak electric field strength of 220 V/m is approximately 1.2306 x 10^(-5) W/m².

To know more about intensity, refer here:

https://brainly.com/question/29526985#

#SPJ11


Related Questions

Light from a helium-neon laser (λ=633 nm) passes Part A through a circular aperture and is observed on a screen 4.70 m behind the aperture. The width of the central What is the diameter (in mm ) of the hole? maximum is 2.20 cm. You may want to review

Answers

The diameter of the hole is 11.9 mm

This is calculated using the formula

d=λ/D where d is the diameter of the hole, λ is the wavelength of light (633nm in this case) and D is the distance between the light source and the screening (in this case 4.7m)

A wheel rotates with a constant angular velocity of 2.00 rad/s.
Part A
Compute the radial acceleration of a point 0.450m from the axis, using the relation: radian acceleration=w^2r
Part B
Find the tangential speed of the point, and compute its radial acceleration from the relation .:rad acc=v^2/r

Answers

Part A: The radial acceleration is 1.80 m/s^2. Part B: The tangential speed is 0.900 m/s and the radial acceleration is 2.00 m/s^2.

Part A: The radial acceleration of a point 0.450 m from the axis, with a constant angular velocity of 2.00 rad/s, can be calculated using the equation for radial acceleration, which is given by the relation radian acceleration = ω^2r.

Using the given values, we have:

ω = 2.00 rad/s (angular velocity)

r = 0.450 m (distance from the axis)

Substituting these values into the equation, we get:

radian acceleration = (2.00 rad/s)^2 * 0.450 m

Calculating the expression, we find that the radial acceleration is 1.80 m/s^2.

Part B: To find the tangential speed of the point, we can use the formula v = ωr, where v represents the tangential speed, ω is the angular velocity, and r is the distance from the axis.

Using the given values from Part A, we have:

ω = 2.00 rad/s (angular velocity)

r = 0.450 m (distance from the axis)

Substituting these values into the formula, we get:

v = 2.00 rad/s * 0.450 m

Calculating the expression, we find that the tangential speed of the point is 0.900 m/s.

To compute the radial acceleration using the relation radian acceleration = v^2/r, we can substitute the values we just calculated:

radian acceleration = (0.900 m/s)^2 / 0.450 m

Evaluating the expression, we find that the radial acceleration is 2.00 m/s^2.

In summary, the radial acceleration of a point 0.450 m from the axis with a constant angular velocity of 2.00 rad/s is 1.80 m/s^2. The tangential speed of the point is 0.900 m/s, and the radial acceleration calculated using the relation v^2/r is 2.00 m/s^2.

Learn more aboutr adial acceleration from the given link:

https://brainly.com/question/30416040

#SPJ11.

Initially, a single capacitance C
1

is wired to a battery. Then capacitance C
2

is added in parallel. Is the potential difference across C
1

now more than, less than, or the same as previously? Same more than less than

Answers

Initially, a single capacitance C1 is wired to a battery. Then capacitance C2 is added in parallel. Is the potential difference across C1 now more than, less than, or the same as previously?

The potential difference across C1 will remain the same as previously. The potential difference is also known as the voltage drop across a particular component in an electrical circuit. According to Kirchhoff's loop rule, the sum of the voltage drop in a closed loop is zero.

As a result, any voltage applied to the battery is distributed among all of the components that are present in the circuit.However, if the capacitances are wired in series, the potential difference across each capacitance will be different. For a series combination of capacitors, the sum of the potential differences across each capacitor will be equal to the voltage of the battery.

In a parallel combination of capacitors, the potential difference across each capacitor is the same.Here's a summary of how the voltage distribution happens in a series and parallel circuit of capacitors.

Series Circuit: V = V1 + V2 + V3 + ....VnParallel Circuit: V = V1 = V2 = V3 = ....Vn

Therefore, the potential difference across the capacitance C1 is the same as previously.

To know more about capacitance visit:

https://brainly.com/question/31871398

#SPJ11

Part A A +2.2 nC charge is at the origin and a -5.2 nC charge is at x = 1.0 cm. At what x-coordinate could you place a proton so that it would experience no net force? Express your answer with the appropriate units. View Available Hint(s) μΑ ? -0.7 cm Submit Previous Answers X Incorrect; Try Again

Answers

Coulomb's Law states that the force between two charges is proportional to the product of the charges and inversely proportional to the square of the distance between them.

The formula for Coulomb's law is:F = (k q1 q2) / r² Where,F is the force between the charges.q1 and q2 are the magnitudes of the charges.r is the distance between the two charges.k is Coulomb's constant.

The charge at the origin will exert a force on the proton which is repulsive because the proton is also positively charged.

Therefore, the proton has to be placed at the left of the charge at the origin. So, let's assume the proton is placed at a distance x from the origin.

As the proton is not moving, the net force acting on the proton is zero. So, the forces acting on the proton due to the two charges should be equal in magnitude and opposite in direction.

From Coulomb's Law, the electric force (F) between two charges (q1 and q2) separated by a distance (r) is given by:F = k(q1q2 / r²).

Here, k = 9 × 10^9 Nm²/C², q1 = +2.2 nC, q2 = +1.6 × 10^-19 C (charge on a proton), r1 = x and r2 = 1.0 cm – x.

The force on proton due to the charge at the origin: F1 = k (q1q2) / r1².

The force on proton due to the charge at x = 1.0 cm:F2 = k (q2q3) / r2² (opposite direction to F1).

The net force on the proton is zero.F1 = F2k (q1q2) / r1² = k (q2q3) / r2²(2.2×10⁻⁹C)(1.6×10⁻¹⁹C)/(x)² = (5.2×10⁻⁹C)(1.6×10⁻¹⁹C)/(0.01m - x)².

On simplifying we get x = 0.007 m = 0.7 cm.

Answer: The x-coordinate where a proton could be placed so that it would experience no net force is 0.7 cm.

Learn more about electric force  here ;

https://brainly.com/question/20935307

#SPJ11

part 1 of 2 Consider a force F=583 N pulling 3 blocks of masses m
1

=5.57 kg,m
2

=18.7⋅kg, and m
3

=33.4 kg along a frictionless horizontal 2. 2.54608 surface. 3. 5.72019 4. 6.66667 5. 8.20275 Find the acceleration a of the blocks. 6. 7.83192 Answer in units of m/s
2
. Answer in units of m/s

2 7. 3.1696 8. 12.5565 9. 10.1092 10. 11.1547 part 2 of 2 The tension of the strings are T
1

and T
2

(see sketch). The equation of motion of m
2

is given by 2. T
1

=m
1

a. 3. T
1

+T
2

=m
1

a. 4. T
1

−T
2

=m
2

a. 5. T
1

+T
2

=m
2

a. 6. T
1

=(m
1

+m
3

)a. 7. T
1

+T
2

=(m
1

+m
3

)a. 8. T
1

−T
2

=(m
1

+m
3

)a. 9. T
1

−T
2

=m
1

a.

Answers

Consider the force F pulling 3 blocks with different masses along a frictionless horizontal surface. The masses of the 3 blocks are given as:m1 = 5.57 kgm2 = 18.7 kgm3 = 33.4 kgThe acceleration a of the blocks can be found using Newton's second law of motion.

F = maSince the surface is frictionless, the force F will be applied entirely to the acceleration of the blocks.The total mass of the blocks is:m = m1 + m2 + m3 = 5.57 kg + 18.7 kg + 33.4 kg = 57.67 kgApplying Newton's second law of motion:F = ma583 N = (57.67 kg) aHence, the acceleration of the blocks, a = 10.1092 m/s^2. Therefore, the correct answer is option 9. T1 − T2 = m1 a is correct.

To know more about acceleration visit:

https://brainly.com/question/2303856

#SPJ11

A spider hangs from a strand of silk whose radius is 2.3×10
−6
m. The density of the silk is 1300 kg/m
3
. When the spider moves, waves travel along the strand of silk at a speed of 260 m/s. Determine the mass of the spider. Number Units

Answers

When the spider moves, waves travel along the strand of silk at a speed of 260 m/s.

Determine the mass of the spider.

Given:

Radius of silk strand,

r = 2.3×10⁻⁶ m

Density of silk,

ρ = 1300 kg/m³

Speed of wave,

v = 260 m/s

Let the mass of spider be m.

From formula for velocity of wave in a stretched string,

v = √(T/μ)

where T is tension and μ is linear mass density.

Tension,

T = μv²

For silk strand, linear mass density,

μ = ρ × (2r)² = 1300 × (2 × 2.3×10⁻⁶)² = 0.02 kg/m

Tension,

T = μv² = 0.02 × 260² = 135200 N

We know,

weight = mg

To know more about speed visit:

https://brainly.com/question/17661499

#SPJ11

Two flat, partially transmitting mirrors are separated in air by 1 mm. A material of refractive index n=1.5 is inserted between the mirrors. (a) What is the optical path length before and after inserting the high index material between the two mirrors? (b) A laser beam travels along an axis perpendicular to the mirror faces and it enters through one mirror into the space between mirrors. The laser has a wavelength of 500 nm. How many whole wavelengths fit in exactly between the two mirrors in each case.

Answers

Two flat, partially transmitting mirrors are separated in air by 1 mm:(a) the optical path length is 1.5 mm. (b) whole wavelengths fit in exactly between the two mirrors in each case: 2000 wavelengths and 3000 wavelengths

(a) The optical path length before inserting the high index material between the two mirrors is equal to the physical distance between the mirrors in air. Since the mirrors are separated by 1 mm in air, the optical path length is 1.5 mm.

After inserting the high index material (refractive index n=1.5) between the mirrors, the optical path length is calculated by multiplying the physical distance by the refractive index. Therefore, the optical path length after inserting the material is 1 mm × 1.5 = 1.5 mm.

(b) To determine the number of whole wavelengths that fit between the two mirrors, we can use the formula:

Number of wavelengths = Optical path length / Wavelength

For the case before inserting the material, the optical path length is 1 mm and the wavelength is given as 500 nm (or 0.5 μm). Plugging these values into the formula, we get:

Number of wavelengths = 1 mm / 0.5 μm = 2000 wavelengths

For the case after inserting the material, the optical path length is 1.5 mm and the wavelength remains the same at 500 nm. Substituting these values into the formula, we find:

Number of wavelengths = 1.5 mm / 0.5 μm = 3000 wavelengths

Therefore, exactly 2000 whole wavelengths fit between the two mirrors before inserting the material, and 3000 whole wavelengths fit between the mirrors after inserting the high index material.

To know more about wavelengths, refer here:

https://brainly.com/question/31143857#

#SPJ11

The horizontal surface on which the block of mass 5.9 kg slides is frictionless. The force of 23 N acts on the block in a horizontal direction and the force of 69 N acts on the block at an angle as shown below. What is the magnitude of the resulting ac- celeration of the block? The acceleration of gravity is 9.8 m/s
2
. 3. 1.949153 4. 6.923077 5. 2.840909 6. 3.297872 7. 2.232143 8. 4.393939 9. 2.777778 10. 7.571429

Answers

Mass of block, m = 5.9 kgForce acting on the block in horizontal direction, F1 = 23 N Force acting on the block at an angle, F2 = 69 N Acceleration due to gravity, g = 9.8 m/s².

The magnitude of the resulting acceleration of the block is to be calculated.Concepts used: Newton's second law of motion, resolving forces in x and y-directions, Pythagoras theorem Solution:Newton's second law of motion states that the net force on an object is equal to its mass times its acceleration.

So, F_net = ma.The force in horizontal direction, F1 = 23 NSo, the net force in horizontal direction, F_net_x = 23 N.The force acting on the block at an angle, F2 = 69 NWe can resolve the force, F2 into its components in x and y-directions as shown in the figure below.

The angle of the force, F2 with the horizontal is given as 30°.Block force componentsThis shows that the component of the force F2 in x-direction is given as F2cos(30°) and in y-direction, it is given as F2sin(30°).Hence, the force in x-direction, [tex]y = 8(0.375)² - 6(0.375) - 5 = -5.72ˆj,[/tex]

The force in y-direction, [tex]F2_y = F2 sin(30°) = (69 N)(sin 30°) = 34.5 N[/tex].The net force in y-direction, F_net_y is equal to the weight of the block.

To know more about horizontal visit:

https://brainly.com/question/29019854

#SPJ11

3. Example 21.4: A 75.0-cm-long rod of diameter 2.54 cm carries a uniform volume charge density. The electric field inside the rod at a point 6.84 mm from the rod's axis, but not near either end, has magnitude 286kN/C. Find (a) the total charge on the rod and (b) the magnitude of the electric field 3.60 cm from the rod's axis. Hint: For (a), see the result of the preceding problem.

Answers

The total charge on (a) the rod is 4.57 µC. (b) The magnitude of the electric field 3.60 cm from the rod's axis is 78.6 kN/C.

(a) The total charge on the rod can be found by calculating the volume of the rod and multiplying it by the uniform volume charge density. The volume of a cylinder is given by V = πr²h, where r is the radius and h is the height (length) of the rod.

Substituting the given values, V = π(1.27 cm)²(75.0 cm) = 4.773 cm³. To convert the volume to cubic meters, we divide by 10⁶: V = 4.773 × 10⁻⁶ m³.

The volume charge density (ρ) is defined as ρ = Q/V, where Q is the total charge.

Rearranging the equation, Q = ρV. Substituting the given electric field inside the rod (E = 286 kN/C) from the preceding problem, we have ρ = E/ε₀, where ε₀ is the permittivity of free space.

ρ = (286 × 10³ N/C)/(8.85 × 10⁻¹² C²/N·m²) ≈ 3.23 × 10⁻⁶ C/m³.

Q = ρV = (3.23 × 10⁻⁶ C/m³)(4.773 × 10⁻⁶ m³) ≈ 4.57 µC.

(b) The magnitude of the electric field at a distance from the rod's axis can be calculated using the formula for the electric field of a charged rod.

For a point outside the rod, the electric field is given by E = (kλ/r), where k is the electrostatic constant, λ is the linear charge density, and r is the distance from the rod's axis.

The linear charge density λ is defined as λ = Q/L, where Q is the total charge on the rod and L is the length of the rod.

λ = (4.57 × 10⁻⁶ C)/(0.75 m) = 6.09 × 10⁻⁶ C/m.

Then we can calculate the electric field at a distance of 3.60 cm (0.036 m) from the rod's axis:

E = (kλ/r) = (9 × 10⁹ N·m²/C²)(6.09 × 10⁻⁶ C/m)/(0.036 m) ≈ 78.6 kN/C.

To know more about magnitude, refer here:

https://brainly.com/question/2596740#

#SPJ11

A projectile is launched from ground level at 10° above the horizontal and lands downrange. What other projection angle (in degrees) for the same speed would produce the same down-range distance?

Answers

The other projection angle that would produce the same down-range distance is 10° below the horizontal, which is -10°.

To find the projection angle that would produce the same down-range distance for the same initial speed, we can use the concept of range symmetry.

When a projectile is launched at an angle above the horizontal, the range (horizontal distance traveled) is maximized when the projectile is launched at the same angle but in the opposite direction. This is known as the principle of range symmetry.

In this case, the projectile is initially launched at an angle of 10° above the horizontal. To find the projection angle that would produce the same down-range distance, we need to find the angle that is 10° below the horizontal.

Therefore, the other projection angle that would produce the same down-range distance is 10° below the horizontal, which is -10°.

Note: Negative angles below the horizontal represent the angle measured in the downward direction from the horizontal line.

Learn more about projectile

https://brainly.com/question/8104921

#SPJ11


Find the energy ( in eV) of an opticsl photon of frequency 7.09.

please help me ASAP



frequency unit is Hz

Answers

The energy of an optical photon with a frequency of 7.09 Hz is 1.29 eV. The energy of an optical photon can be determined by using the formula: [tex]$$E=hf$$[/tex].

E is energy, h is Planck's constant, and f is frequency.

The unit of frequency is Hz, but we need to convert it to angular frequency (radians per second).

The conversion formula is:

[tex]$$ω = 2πf$$[/tex]

Where ω is angular frequency and f is frequency.

So, we can calculate the angular frequency as follows:

[tex]$$ω = 2πf = 2π(7.09) = 44.56 \text{ rad/s}$$[/tex]

Now, we can calculate the energy of the photon as follows:

[tex]$$E = hf = \frac{hω}{2π} = \frac{(6.626 \times 10^{-34}\text{ J s})(44.56 \text{ rad/s})}{2π} = 2.07 \times 10^{-19} \text{ J}$$[/tex]

To convert this to electron volts (eV), we can use the conversion factor 1 eV = 1.602 × 10-19 J:

[tex]$$E = \frac{2.07 \times 10^{-19} \text{ J}}{1.602 \times 10^{-19} \text{ J/eV}} = 1.29 \text{ eV}$$[/tex]

To know more about energy visit:

https://brainly.com/question/1932868

#SPJ11

The trafic stationary radar unit emits waves with a frequency of 1.5x10^9 Hz. The receiver unit measures the reflected waves from the car moving away. The frequency of this reflected wave differs from the emiting by 500 Hz . What is the car speed?

Answers

The car's speed is approximately 1 m/s based on the observed frequency shift of 500 Hz, according to the Doppler effect equation. This indicates that the car is moving away from the radar unit at a relatively low velocity.

The frequency shift observed in the reflected waves from the car can be attributed to the Doppler effect. The Doppler effect describes the change in frequency of a wave as a result of relative motion between the source of the wave and the observer. In this case, the radar unit emits waves with a frequency of 1.5x10^9 Hz, and the reflected waves from the car exhibit a frequency difference of 500 Hz.

The Doppler effect equation, Δf/f = v/c, relates the change in frequency (Δf) to the relative velocity (v) between the source and the observer, and the speed of light (c). By rearranging the equation, we can solve for the velocity:

v = (Δf/f) * c

Substituting the given values, we have:

v = (500 Hz / 1.5x10^9 Hz) * 3x10^8 m/s

v ≈ 1 m/s

Therefore, the car's speed is approximately 1 m/s based on the observed frequency shift. This indicates that the car is moving away from the radar unit at a relatively low velocity.

To learn more about Doppler effect equation, Click here:

https://brainly.com/question/28106478

#SPJ11

the position of a particle is given by r=(ar^2)i+(bt^3)j+(ct^-2)k. a,b, and c are constants. what is the velocity and acceleration as a function of time?

Answers

We know that the position of the particle is given by:

r = (ar²)i + (bt³)j + (ct⁻²)k

The velocity of the particle is the derivative of its position with respect to time.taking the derivative of r with respect to time, we have:

v = dr/dtv

= 2ar(di/dt) + 3bt²(dj/dt) + (-2ct⁻³)(dk/dt) v = 2ar(di/dt) + 3bt²(dj/dt) - 2ct⁻³(dk/dt)

The acceleration of the particle is the derivative of its velocity with respect to time.Taking the derivative of v with respect to time, we have:

a = dv/dta = 2a²r(di/dt) + 6bt(dj/dt) + 6c(t⁻⁴)(dk/dt)

a = 2a²r(di/dt) + 6bt(dj/dt) + 6c(t⁻⁴)(dk/dt)

Therefore, the velocity and acceleration as a function of time are:

v = 2ar(di/dt) + 3bt²(dj/dt) - 2ct⁻³(dk/dt)

a = 2a²r(di/dt) + 6bt(dj/dt) + 6c(t⁻⁴)(dk/dt).

To know more about particle visit :

https://brainly.com/question/13874021

#SPJ11

In a photoelectric-effect experiment it is observed that no current flows unless the wavelength is less than 540 nm. What is the work function of this material? Express your answer using three significant figures. Part B What stopping voltage is required if light of wavelength 410 nm is used? Express your answer to three significant figures and include the appropriate units.

Answers

The work function of the material in the photoelectric effect experiment is approximately 3.68 x 10^-19 J.  The stopping voltage required when the light of wavelength 410 nm is used is approximately 0.799 V.

To find the work function of the material in the photoelectric effect experiment, we can use the equation:

Energy of a photon (E) = Work function (W) + Kinetic energy of ejected electron (KE)

Given that no current flows unless the wavelength is less than 540 nm, we know that the threshold wavelength (λ) is 540 nm.

The energy of a photon can be calculated using the equation:

Energy of a photon (E) = (Planck's constant) * (speed of light / wavelength)

Using the given wavelength of 540 nm, we can calculate the energy of the photon:

Energy of a photon (E) = (6.626 x 10^-34 J·s) * (3.00 x 10^8 m/s) / (540 x 10^-9 m)

Energy of a photon (E) ≈ 3.68 x 10^-19 J

Since the threshold wavelength corresponds to the minimum energy required to eject an electron (no current flow), the energy of the photon is equal to the work function:

Work function (W) ≈ 3.68 x 10^-19 J

Therefore, the work function of the material is approximately 3.68 x 10^-19 J.

Part B:

To calculate the stopping voltage required when light of wavelength 410 nm is used, we can use the equation:

Stopping voltage (V) = (Planck's constant / charge of an electron) * (speed of light/wavelength) - (Work function/charge of an electron)

Given the wavelength of 410 nm, we can calculate the stopping voltage:

Stopping voltage (V) = [(6.626 x 10^-34 J·s) / (1.602 x 10^-19 C)] * [(3.00 x 10^8 m/s) / (410 x 10^-9 m)] - [(3.68 x 10^-19 J) / (1.602 x 10^-19 C)]

Stopping voltage (V) ≈ 0.799 V

Therefore, the stopping voltage required when light of wavelength 410 nm is used is approximately 0.799 V.

To learn more about photoelectric effect click here

https://brainly.com/question/33463799

#SPJ11




What happens to the wave fronts as the source of sound moves away from you? O a. wave fronts are spread out O b. wave fronts are decreased O C. wave fronts are compressed O d. wave fronts are increase

Answers

The correct answer is option a: wave fronts are spread out.

The Doppler effect causes a change in the frequency and wavelength of the sound waves perceived by the observer. As the source moves away, the wavelength of the sound waves increases, resulting in the spreading out of the wave fronts.

To understand this, consider an analogy of ripples on the surface of a pond. When you throw a stone into the water, ripples are generated and spread out in concentric circles. If you move away from the point of impact, you will observe that the distance between the ripples increases as they move away from the source. This is similar to what happens with sound waves when the source moves away. The wave fronts, which represent the crests of the waves, become more spread out as they propagate away from the source.

Therefore, the correct answer is option a: wave fronts are spread out.

Learn more about wavelength here:
https://brainly.com/question/32900586

#SPJ11

A refrigerator is maintained at 5° C by removing heat at a rate of 600 kJ/min. The power input into the refrigerator is 5 kW. Hint: Determine the following: (a) Coefficient of performance of the refrigerator (COPR). (b) The rate at which heat is rejected to the room the refrigerator is in. (c) Coefficient of performance of the heat pump (COP HP as ) associated with the refrigerator.

Answers

A. Coefficient of performance of the refrigerator is  0.2%.

B. The rate at which heat is rejected to the room the refrigerator is  1200 kJ/min.

C. Coefficient of performance of the heat pump associated with the refrigerator is 4.

(a) Coefficient of performance of the refrigerator (COPR):

The coefficient of performance of the refrigerator (COPR) is given as:

COPR = QL / W, where

QL = Heat extracted from the refrigerator, and

W = Work input to the refrigerator.

P = 5000 watts = 5 kW

QL = 600 kJ/min = 10 kJ/s

W = P = 5000 watts = 5 kW

Therefore, COPR = QL / W = 10 / 5000 = 0.002 or 0.2%.

(b) The rate at which heat is rejected to the room the refrigerator is in:

The rate at which heat is rejected to the room the refrigerator is in is given by:

QH = QL + W

QH = 10 kJ/s + 5 kW = 10 kJ/s + 10 kJ/s = 20 kJ/s or 1200 kJ/min.

(c) Coefficient of performance of the heat pump (COPHP) associated with the refrigerator:

The coefficient of performance of the heat pump (COPHP) associated with the refrigerator is given as:

COPHP = QH / W, where

QH = Heat supplied to the room,

W = Work input to the refrigerator.

COPHP = QH / W = 20 kJ/s / 5000 W = 4.

To learn more about coefficient, refer below:

https://brainly.com/question/1594145

#SPJ11

Find a metal and a semiconductor metal to form a Schottky junction. Label the energy band parameters before and after joining. Plot the depletion width as a function of applied bias.

Answers

A metal and a semiconductor commonly used to form a Schottky junction are platinum (Pt) as the metal and silicon (Si) as the semiconductor.

In a Schottky junction, when a metal and a semiconductor are brought into contact, an energy band diagram can be drawn to represent the electronic structure before and after joining. Before joining, the metal has a continuous energy band, while the semiconductor has a bandgap between the valence band and the conduction band. After joining, the Fermi level of the metal aligns with the conduction band of the semiconductor, resulting in a downward bending of the energy bands near the junction interface.

The depletion width in a Schottky junction depends on the applied bias voltage. When no bias is applied, there is a built-in potential barrier at the junction, resulting in a depletion region with a certain width. As the bias voltage is increased, the depletion width decreases due to the increased carrier injection and the narrowing of the potential barrier.

The precise relationship between the depletion width and the applied bias depends on the specific characteristics of the Schottky junction, such as the doping concentration and the material properties. To plot the depletion width as a function of applied bias, detailed device parameters and material properties would be required.

Learn more about from the given link:

https://brainly.com/question/14410006

#SPJ11


An ion of charge +1.6 x 10^-1 C is projected through a velocity
selector, where the E-field is adjusted to select a velocity of 1.5
x 10^6 m/s at 3 x 10^8 V/m. What is the magnetic field field?

Answers

The magnetic field required in the velocity selector is 200 T (tesla).

To determine the magnetic field required in the velocity selector, we can use the formula for the Lorentz force experienced by a charged particle:

F = q * (E + v x B)

Where:

F is the force experienced by the ion,

q is the charge of the ion (+1.6 x 10^-1 C),

E is the electric field (3 x 10^8 V/m),

v is the velocity of the ion (1.5 x 10^6 m/s),

B is the magnetic field we need to determine.

Since the electric field is adjusted to select a specific velocity, the force experienced by the ion should be zero in the direction perpendicular to the velocity. Therefore, we can set the perpendicular component of the Lorentz force to zero:

0 = q * (E + v x B)_perpendicular

The cross product of the velocity and magnetic field vectors can be expressed as:

v x B = |v| * |B| * sin(θ)

Where θ is the angle between the velocity and magnetic field vectors.

Since we want the force to be zero, sin(θ) must be zero, which means that θ is either 0° or 180°. In this case, we assume that the angle between the velocity and magnetic field vectors is 180° (opposite direction). Therefore, sin(θ) = -1.

Plugging in the values and solving for B:

0 = q * (E + |v| * |B| * sin(180°))_perpendicular

0 = q * (E - |v| * |B|)

Solving for |B|:

|B| = E / |v|

Substituting the given values:

|B| = (3 x 10^8 V/m) / (1.5 x 10^6 m/s)

|B| = 200 T

To know more about magnetic field refer here

https://brainly.com/question/14848188#

#SPJ11

According to Lenz's law the direction of an induced current in a coil of resistance R will: be counterclockwise. produce heat in the coil. be clockwise. oppose the effect that produced it.

Answers

According to Lenz's law, the direction of an induced current in a coil of resistance R will oppose the effect that produced it. The law is named after Heinrich Lenz, a Russian physicist, who formulated it in 1834.

It is one of the fundamental laws of electromagnetism, which states that an induced electromotive force (EMF) always creates a current in a closed loop in such a direction that the magnetic field it produces opposes the magnetic field that produced it.The law is based on Faraday's Law, which states that a change in magnetic field can induce an EMF in a coil of wire.

Lenz's law extends this principle to predict the direction of the induced current. When the magnetic field that induces the current is increasing, the induced current flows in such a direction as to create a magnetic field that opposes the increase. On the other hand, when the magnetic field that induces the current is decreasing, the induced current flows in such a direction as to create a magnetic field that opposes the decrease.

It also helps in the study of eddy currents and electromagnetic braking. In summary, according to Lenz's law, the direction of an induced current in a coil of resistance R will oppose the effect that produced it.

To know more about direction visit :

https://brainly.com/question/32262214

#SPJ11

Question 8 (4 marks) = A step index optical fibre comprises a core of refractive index n1 = 1.448 surrounded by cladding of refractive index n2 1.444 as shown in the figure below. An incident light ray propagates through the fibre via total internal reflection. What is the angle 0 required to ensure that the incident ray undergoes total internal reflection? Cladding n Coren Cladding n

Answers

The incident angle (θ) should be greater than or equal to 75.77 degrees to ensure total internal reflection in the optical fiber. To ensure total internal reflection in an optical fiber, the incident angle (θ) must be greater than or equal to the critical angle (θc), which is determined by the refractive indices of the core and cladding.

The critical angle (θc) can be calculated using the following formula:

θc = arcsin(n2/n1)

Where:

n1 = refractive index of the core

n2 = refractive index of the cladding

In this case, n1 = 1.448 and n2 = 1.444.

θc = arcsin(1.444/1.448)

θc ≈ 75.77 degrees

Therefore, the incident angle (θ) should be greater than or equal to 75.77 degrees to ensure total internal reflection in the optical fiber.

To know more about refractive index, click here:-

https://brainly.com/question/30761100

#SPJ11

A 3.40 kg block of ice at 0

C is added to a picnic cooler. How much heat will the ice remove as it melts to water at 0

C ? kcal

Answers

When a 3.40 kg block of ice at 0∘C is added to a picnic cooler, the amount of heat that the ice will remove as it melts to water at 0∘C is found using the formula for latent heat of fusion of ice and heat capacity of water.

Latent heat of fusion of ice is the heat required to change ice into water at the same temperature.

Heat capacity of water is the heat required to raise the temperature of water by 1 degree Celsius.

Latent heat of fusion of ice = 80 kcal/kg

Heat capacity of water = 1 kcal/kg*∘C

The amount of heat that the ice will remove as it melts to water at 0∘C is given by;

Q = m * L

Where;

Q = Amount of heat remove dm = Mass of the block of iceL = Latent heat of fusion of ice

The mass of the block of ice is given as 3.40 kg

Hence;

Q = 3.40 kg * 80 kcal/kg= <<3.40*80=272>>272 kcal

The amount of heat that the ice will remove as it melts to water at 0∘C is 272 kcal.

To know more about amount visit :

https://brainly.com/question/32453941

#SPJ11

How much charge will a set of metal plates with a capacitance 280 microfarads store in a potential difference of 12 V ? Coulombs

Answers

The metal plates will store approximately 3.36 milliCoulombs (mC) of charge in a potential difference of 12 V.

To calculate the charge stored in a capacitor, we can use the formula:

Q = C × V

where:

Q is the charge stored in the capacitor

C is the capacitance of the capacitor

V is the potential difference across the capacitor

Given:

Capacitance (C) = 280 microfarads = 280 × 10⁻⁶ F

Potential difference (V) = 12 V

Substituting these values into the formula, we can calculate the charge (Q):

Q = (280 × 10⁻⁶ F) × 12 V

= 3.36 × 10⁻³ C

Therefore, the metal plates will store approximately 3.36 milliCoulombs (mC) of charge in a potential difference of 12 V.

To know more about charge:

https://brainly.com/question/28068849

#SPJ4

Astronomical observations of our Milky Way galaxy indicate that it has a mass of about 8.0×10
11
solar masses. A star orbiting on the galaxy's periphery is about 6.0×10
4
light-years from its center. (a) Write the gravitational constant in terms of solar masses, light years, and years. (b) What should the orbital period of that star be? (c) If its period is 6.0×10
7
years instead, what is the mass of the galaxy? Such calculations are used to imply the existence of other matter. such as a very massive black hole at the center of the Milky Way.

Answers

The value of G, after applying the given conversion factors, is approximately 1.974 × 10^-54 m^3 kg^-1 yr^-2. Therefore, the value of T is approximately 49,000,000.

(a) To express the gravitational constant in terms of solar masses (M☉), light years (ly), and years (yr), we need to convert the units.

The gravitational constant (G) is typically expressed in SI units as 6.67430 × 10^-11 m^3 kg^-1 s^-2.

To convert meters to light years, we use the conversion factor 1 light year = 9.461 × 10^15 meters.

To convert kilograms to solar masses, we use the mass of the Sun: 1 M☉ = 1.989 × 10^30 kg.

Using these conversions, we can write the gravitational constant in terms of solar masses, light years, and years:

G = (6.67430 × 10^-11 m^3 kg^-1 s^-2) * (1 M☉ / (1.989 × 10^30 kg))^2 * (1 ly / (9.461 × 10^15 m))^3 * (1 yr / s)^2

Therefore, the value of G, after applying the given conversion factors, is approximately 1.974 × 10^-54 m^3 kg^-1 yr^-2.

(b) To find the orbital period (T) of the star, we can use Kepler's third law, which states that the square of the orbital period is proportional to the cube of the semi-major axis of the orbit.

T^2 ∝ r^3

where r is the distance of the star from the center of the galaxy.

Since the star is 6.0 × 10^4 light-years from the center, we can substitute this value into the equation:

T^2 ∝ (6.0 × 10^4 ly)^3

Simplifying the equation:

T^2 = (6.0 × 10^4)^3 ly^3

Taking the square root of both sides:

T = (6.0 × 10^4)^(3/2) ly

Therefore, the value of T is approximately 49,000,000 ly

(c) If the orbital period is instead given as 6.0 × 10^7 years, we can use the same equation as in part (b) to find the mass of the galaxy.

T^2 ∝ r^3

Substituting the given period and solving for the distance:

(6.0 × 10^7)^2 = r^3

r = (6.0 × 10^7)^(2/3)

Finally, to calculate the mass of the galaxy (M), we use the formula:

M = (T^2 / G) * r^3

By substituting the given values of the period and the distance, we can calculate the mass of the galaxy.

The calculations above are used to study and understand the dynamics of galaxies, including the Milky Way. Deviations from the expected masses based on visible matter can suggest the presence of additional matter, such as massive black holes.

Learn more about gravitational constant here:

https://brainly.com/question/17239197

#SPJ11

The wavefunction for a wave travelling on a taut string of linear mass density = 0.03 kg/m is given by: y(x.t) = 0.2 sin(4rtx + 10rt), where x and y are in meters and tis in seconds. If the speed of the wave is doubled while keeping the same frequency and amplitude then the new power of the wave is: Op' = 2.96 W OP'=1.48 W O P = 0.74 W O p' = 6,66 W O P = 3.33 W

Answers

If the speed of a wave on a taut string with linear mass density of 0.03 kg/m is doubled while maintaining the same frequency and amplitude, the new power of the wave will be 3.33 W.

The power of a wave is given by the formula P = (10.5)ρAv[tex]v^{2}[/tex], where P is the power, ρ is the linear mass density, A is the amplitude, and v is the velocity of the wave.

In this case, the initial power of the wave can be calculated using the given wavefunction. Since the wave travels on a taut string with a linear mass density of 0.03 kg/m, and the wavefunction is y(x,t) = 0.2 sin(4rtx + 10rt), we can determine the amplitude as A = 0.2.

Initially, the velocity of the wave can be determined from the wave equation v = fλ, where f is the frequency and λ is the wavelength. Since the wave equation can be written as y(x,t) = Asin(kx - ωt), we can equate it with the given wavefunction and compare coefficients to find that k = 4r and ω = 10r.

Therefore, the wavelength is λ = 2π/k = π/2r. From the given wavefunction, we can observe that the frequency is f = ω/(2π) = 5r/(2π).

Substituting the values into the velocity equation, we get v = fλ = (5r/(2π)) * (π/2r) = 5/4 m/s. The initial power can now be calculated as P = (0.5) * (0.03 kg/m) * (0.2 m) * (5/4 m/[tex]s^{2}[/tex]) = 0.075 W.

To find the new power when the wave speed is doubled, we double the velocity while keeping the frequency and amplitude unchanged. The new velocity becomes 2 * (5/4) = 2.5 m/s. Substituting this value into the power formula, we obtain P' = (0.5) * (0.03 kg/m) * (0.2 m) * (2.5 m/[tex]s^{2}[/tex]) = 0.375 W.

However, since the question asks for the power in watts, we need to consider significant figures. Therefore, the new power is approximately 0.37 W, which can be rounded to 0.74 W. However, the given options do not include this value.

Therefore, we need to account for significant figures again and round the answer to the closest option, which is 3.33 W.

Learn more about amplitude here:

https://brainly.com/question/9525052

#SPJ11

What is the semi-major axis of a comet's orbit around the sun with a period of 8 years? a. 0.19AU b. 00737AU c. 0.399AU d. 0.136AU e. 17.8AU f. 5.24AU g. 7.37AU h. 0.25AU i. 13.6AU j. 4AU k. 0.157AU I. 6.35AU m. 0.0562AU n. 2.52AU

Answers

The semi-major axis of a comet's orbit around the sun with a period of 8 years is 4AU. The correct option is j.

The semi-major axis of a comet's orbit around the Sun can be determined using Kepler's third law of planetary motion. According to this law, the square of the orbital period (T) is proportional to the cube of the semi-major axis (a) of the orbit.

Mathematically, this relationship can be expressed as:

T² = k * a³,

where T is the period, a is the semi-major axis, and k is a constant.

For a comet with a period of 8 years, we can plug in this value into the equation and solve for a. Let's calculate it:

8² = k * a³.

64 = k * a³.

Now, comparing the equation to the answer choices provided, we can determine the correct semi-major axis.

Let's calculate the cube root of 64 to find the value of a:

a = (64)^(1/3).

Using a calculator, we find that the cube root of 64 is 4.

Therefore, the semi-major axis of a comet's orbit around the Sun with a period of 8 years is 4 astronomical units (AU).

So, the correct option is j. 4AU.

To know more about Kepler's third law of planetary motion, refer to the link below:

https://brainly.com/question/33443058#

#SPJ11

A
& B(7%) Problem 7: Suppose there is an astronaut who is traveling at a significant fraction of the speed of light. Randomized Variables d=4.35 ly v=0.92304 c A 50% Part (a) How long, in years, does it take her to travel 4.35 ly at 0.92304c (as measured by the Earth-bound observer)? At=1 ted sin() cos() tan() ( 1 7 8 9 cotan() asin()) acos() E 45 6 ted atan() sinh() 75 12 3 cosh() acotan() tanh Degrees O Radians cotanh() + - 0 VO ACCE 15 CLEAR Submit Hint I give up! ted Hints: 0 deduction per hint. Hints remaining 4 Feedback: 15 deduction per feedback 50% Part (b) How long does it take according to the astronaut in years? ASA 2013 Rapet 18.1LC rate of the native Orcas were higher than SeaWorld Orcas up until the year 2000 (Bobeck. Grade Summa Deductions Potential Late Work S Late Potential Submissions Attempts remai (0% per attemp detailed view

Answers

Part (a): According to the Earth-bound observer, it takes the astronaut traveling at 0.92304c a certain amount of time to cover a distance of 4.35 light-years. To calculate this time, we can use the equation:

time = distance / velocity

Given:

Distance (d) = 4.35 ly (light-years)

Velocity (v) = 0.92304c (c represents the speed of light)

Calculating the time:

time = 4.35 ly / (0.92304c)

To convert light-years to years, we multiply by the conversion factor: 1 ly = 9.461 x 10^12 km, and the speed of light is approximately 3 x 10^5 km/s.

time ≈ (4.35 x 9.461 x 10^12 km) / (0.92304 x 3 x 10^5 km/s)

≈ 4.49 years

Therefore, as measured by the Earth-bound observer, it takes the astronaut approximately 4.49 years to travel a distance of 4.35 light-years at 0.92304c.

Part (b): According to the astronaut, due to time dilation, the perceived time of the journey will be shorter. From the astronaut's frame of reference, the proper time (τ) experienced during the journey will be smaller than the time measured by the Earth-bound observer.

To calculate the proper time, we use the equation:

τ = time / γ

Where γ is the Lorentz factor, given by:

γ = 1 / √(1 - (v/c)^2)

Substituting the given values:

γ = 1 / √(1 - (0.92304c/c)^2)

≈ 2.547

Calculating the proper time:

τ = 4.49 years / 2.547

≈ 1.76 years

Therefore, according to the astronaut, it takes approximately 1.76 years to travel a distance of 4.35 light-years, accounting for time dilation at a velocity of 0.92304c.

To learn more about Earth-bound observer, Click here:

https://brainly.com/question/29806801

#SPJ11

what are speed and velocity and how do they compare

Answers

Speed and velocity are both physical quantities that describe the motion of an object, but they have distinct meanings. Speed refers to how fast an object is moving, while velocity refers to the speed of an object in a specific direction. While speed is a scalar quantity, velocity is a vector quantity.

Speed is defined as the rate at which an object covers a distance. It is a scalar quantity, meaning it only has magnitude and no specific direction. Speed is calculated by dividing the distance traveled by the time taken. For example, if a car travels 100 kilometers in 2 hours, the speed would be 50 kilometers per hour.

On the other hand, velocity includes both speed and direction. It is a vector quantity, meaning it has both magnitude and direction. Velocity describes the rate at which an object changes its position in a specific direction. For instance, if a car travels 100 kilometers in 2 hours towards the east, the velocity would be 50 kilometers per hour to the east.

In summary, speed refers to how fast an object is moving without considering its direction, while velocity takes into account both the speed and the direction of motion. Speed is a scalar quantity, while velocity is a vector quantity.

Learn more about physical quantities here:

https://brainly.com/question/19266346

#SPJ11

An electron has been accelerated from rest through a potential difference of 1000 V. a. What is its kinetic energy, in electron volts? ev b. What is its kinetic energy, in joules? c. What is its speed? m/s

Answers

To determine the electron's kinetic energy in electron volts, we make use of the formula, KE = qV where q = charge of the electron = 1.6 x 10^-19 C and V = potential difference = 1000V. Therefore:

KE = 1.6 x 10^-19 C × 1000V = 1.6 × 10^-16 J

Therefore the electron's kinetic energy in electron volts is 1.6 × 10^-16 eV.

To determine the electron's kinetic energy in joules, we simply convert the electron volts to joules using the conversion factor, 1 eV = 1.6 × 10^-19 J:

KE in joules = 1.6 × 10^-16 eV × (1.6 × 10^-19 J/eV) = 2.56 × 10^-35 Jc)

To determine the electron's speed, we make use of the formula, KE = 1/2mv²where m = mass of electron = 9.11 x 10^-31 kg and KE = 1.6 × 10^-16 J (electron's kinetic energy in joules)

Therefore:1/2mv² = KEv² = 2KE/mv = sqrt(2KE/m)

Substituting KE = 2.56 × 10^-35 J and m = 9.11 x 10^-31 kg gives: v = sqrt(2(2.56 × 10^-35 J)/(9.11 x 10^-31 kg)) = 6.21 × 10^6 m/s

Therefore, the electron's speed is 6.21 × 10^6 m/s.

Learn more about kinetic energy here: https://brainly.com/question/8101588

#SPJ11

the primary nuclear reaction providing energy inside the sun's core converts __________.

Answers

The primary nuclear reaction providing energy inside the Sun's core is known as nuclear fusion. This nuclear fusion process converts hydrogen nuclei into helium nuclei.

The fusion reaction that occurs in the Sun's core is the conversion of hydrogen nuclei (protons) into helium nuclei. This fusion process, known as the proton-proton chain, involves a series of steps that result in the release of energy.

In the proton-proton chain, four hydrogen nuclei (protons) undergo a series of fusion reactions to produce one helium nucleus. The steps involved are as follows:

Two protons (hydrogen nuclei) fuse to form a deuterium nucleus (a proton and a neutron), releasing a positron and a neutrino.

The deuterium nucleus then combines with another proton to form a helium-3 nucleus (two protons and one neutron), releasing a gamma-ray photon.

Two helium-3 nuclei further combine to produce a helium-4 nucleus (two protons and two neutrons) and two free protons.

Overall, this nuclear fusion process converts hydrogen nuclei into helium nuclei, releasing a tremendous amount of energy in the form of gamma-ray photons. This energy is what powers the Sun and allows it to emit heat and light.

To know more about nuclear fusion here

https://brainly.com/question/14019172

#SPJ4

μ, (intensive), that G = a) Show using the definitions of Gibbs free energy G (extensive), and Chemical potential μN where N is the number of particles. Discuss why do not have such a relation for Helmholtz free energy F(extensive) per particle with any intensive thermodynamic quantity. b) Obtain the Gibbs-Durhem relation c) Draw schematically the PV diagram for a van der Wall's gas, showing the Maxwell's construction. d) What is the implications on this diagram from the results of part (b) above?

Answers

a) The Gibbs free energy G is an extensive thermodynamic quantity that depends on the number of particles N, whereas the chemical potential μ is an intensive thermodynamic quantity that describes the change in Gibbs free energy with respect to the number of particles N.

Therefore, the relation between G and μ is G = μN.

On the other hand, the Helmholtz free energy F is also an extensive thermodynamic quantity, but it does not have a direct relation with any intensive thermodynamic quantity per particle. This is because the Helmholtz free energy is primarily concerned with the internal energy and entropy of a system, whereas the chemical potential μ is related to the change in Gibbs free energy due to changes in the number of particles.

b) The Gibbs-Duhem relation is given by:

dG = -SdT + VdP + μdN,

where G is the Gibbs free energy, S is the entropy, T is the temperature, V is the volume, P is the pressure, μ is the chemical potential, and N is the number of particles. The Gibbs-Duhem relation describes the relationship between the different thermodynamic variables in a system.

c) The PV diagram for a van der Waals gas typically exhibits non-ideal behavior due to intermolecular forces. It shows a region of non-linear behavior where the gas transitions between the gas and liquid phases. The Maxwell's construction is a technique used to construct an idealized curve in the PV diagram that separates the two-phase regions.

d) The results from part (b) imply that the chemical potential μ plays a crucial role in understanding the phase transitions and equilibrium conditions of the system. The presence of the Maxwell's construction in the PV diagram indicates the coexistence of two phases during the phase transition, and it ensures that the area enclosed by the curve represents the work done during the transition.

The implications of the Gibbs-Duhem relation and the presence of the Maxwell's construction highlight the importance of considering non-ideal behavior and phase transitions in thermodynamic systems.

To learn more about Gibbs free energy, chemical potential, PV diagrams, you can visit

brainly.com/question/32251188

#SPJ11.

Other Questions
How do you currently describe the business climate globally? What are the implications for the companies in the same industry as your CLC groups company (PepsiCo)? Explain why. Please explain and cite examples. Embraer of Brazil is one of the two leading global manufacturers of regional jets (Bombardier of Canada is the other). Regional jets are smaller than the traditional civilian airliners produced by Airbus and Boeing, seating between 50 and 100 people on average. Embraer has concluded an agreement with a regional U.S. airline to produce and deliver four aircraft one year from now for $80million. Although Embraer will be paid in U.S. dollars, it also possesses a currency exposure of it must pay foreign suppliers $17million for inputs one year from now (but they will be delivering the subcomponents throughout the year). The current spot rate on the Brazilian real(R$) is R$1.8227/$, but it has been steadily appreciating against the U.S. dollar over the past three years. Forward contracts are difficult to acquire and are considered expensive. Citibank Brasil has not explicitly provided Embraer a forward rate quote, but has stated that it will probably be pricing a forward off the current 3.00% U.S. dollar eurocurrency rate and the 11.50% Brazilian government bond rate. Advise Embraer on its currency exposure.How much of net cash position in Brazilian reais will Embraer receive in one year without a hedge if the expected spot rate in one year is expected to be R$1.8227/$?R$114,830,100(Round to the nearest whole number.)**How much in Brazilian reais will Embraer receive in one year if the net cash position is covered by a one-year forward contract?R$___(Round to the nearest whole number.) Discuss the TWO (2) formulations of Kants categorical imperatives. Use examples tosubstantiate your points. B. Discuss the main concepts of virtue theory and state how it can be applied to businesses.C. Differentiate between rule and act utilitarianism. Provide examples Jesse is married, but for 2021 , he will filed separarely from his wife.On January 29, 2021 he purchased 100 shares of KLM stock for $10,000. Shortly he made the purchase , the price of the stock declined sharply. Concerned that his investment would continued to lose value, Jesse decided to cut his losses, and he sold all of his shares of KLM stock for $5,000 on March 25, 2021.Jesse did not have any other capital gains or losses that year, and his only other income consisted of $72,00 in wages. Jesse has not had good luck with his investments in recent years, and he also has a prior year carryover lossof $2,000. What amount of capital loss can Jesse use to offset his ordinary income? the title of an executive summary should include _____. t/f The average level of tariffs on imported products charged by industrialized countries was 40% in 1946. By 1990, after decades of GATT negotiations, it was up to more than 60%. The radius of the earth's very nearly circular orbit around the sun is 1.510 11 m. Find the magnitude of the earth's velocity, angular velocity, and centripetal acceleration as it travels around the sun. (Exercise 4.33) (v=3.010 4 m/s,=2.010 7 rad/s,a r =6.010 3 m/s 2 ) The liquid base of an ice cream has an initial temperature of90Cbefore it is placed in a freezer with a constant temperature of17C. After 1 hour, the temperature of the ice-cream base has decreased to64C. Use Newton's law of cooling to formulate and solve the initial-value problem to determine the temperature of the ice cream 2 hours after it was placed in the freezer. Round your answer to two decimal places. T(2) = ___ Southwest Airines just bought a new jet for $24,000,000. The jet falls into the 7 year MACRS category, with the following depreciation rates (haif-year convention) The jet can be sold for $19,200,000 after 5 years. The company has a marginal tax rate of 34% Part 1 E Attempt 1/5 for 10 pts What is the book value at the end of year 5 ? Part 2 - 1 Attempt 1/5 for 10 pts. What is the after-tax salvage value at the end of year 5 ? Planalto, Inc. sold a machine to a machine dealer for $51,300. Planalto bought the machine for $53,700 several years ago and has claimed $11,850 of depreciation expense on the machine. What is the amount and character of Planaltos gain or loss? Question 49 Industry analysis is primarily concerned with a corporation's (A) societal environment. (B) task environment. (C) sociocultural environment. (D) economic environment. (E) internal environment. Question 50 An agency problem can occur when (A) the desires and objectives of the owners and agents conflict. (B) it is difficult or expensive for the owners to verify what the agent is actually doing. (C) the owners and managers have different attitudes toward risk. (D) executives do not select risky (and potentially profitable) strategies because they fear losing their jobs if the strategy fails. (E) All of the above. Globalization, Rapidly changing technology and increased visibility Which one do you think is affecting B2B the most? Why? Or do you think there is another one the authors missed? You can consider your own experience in B2B or current happenings to B2B companies. The following content is partner provided in the context of stress prevention management, most organizational prevention is: The primary origin of the American legal system is:a. German law.b. Spanish law.c. English law.d. French law Net Present Value Method, Internal Rate of Return Method, and Analysis for a Service CompanyThe management of Advanced Alternative Power Inc. is considering two capital investment projects. The estimated net cash flows from each project are as follows:YearWind TurbinesBiofuel Equipment1$180,000$360,0002180,000360,0003180,000360,0004180,000360,000The wind turbines require an investment of $466,020, while the biofuel equipment requires an investment of $1,027,800. No residual value is expected from either project.Present Value of an Annuity of $1 at Compound InterestYear6%10%12%15%20%10.9430.9090.8930.8700.83321.8331.7361.6901.6261.52832.6732.4872.4022.2832.10643.4653.1703.0372.8552.58954.2123.7913.6053.3532.99164.9174.3554.1113.7853.32675.5824.8684.5644.1603.60586.2105.3354.9684.4873.83796.8025.7595.3284.7724.031107.3606.1455.6505.0194.192Required:1a. Compute the net present value for each project. Use a rate of 10% and the present value of an annuity of $1 in the table above. If required, use the minus sign to indicate a negative net present value. If required, round to the nearest whole dollar. What are the three conditions that define a switching powersupply? What are the three basic characteristics of switching powersupplies? According to Lenz's Law, if the magnetic field enclosed by a loop of wire is changing, a current will be produced in the wire. The direction of the current will be the one that creates a magnetic field opposite the change in the field. The wire loops below surround a magnetic field indicated by the dots or Xes. For each loop, draw an arrow showing the direction of the induced current if the B field is increasing in strength. Explain the reasoning for your choice of current direction. . w W W | X X X X X X X X X X X X X X X X X X X X Explain: You are given two vectors: Vector A: length 10, direction 30 degrees Vector B: length 15, direction 100 degrees. Add Calculate A + B. Your final answer must give both the length of A+B and the direction of A+B. professors can foster self-efficacy in their students if they set low standards for achievement so that most students can earn as and bs in their courses. If you borrow $35,000 to buy a car at 10% APR compounded monthly for 36 months, what are your monthly payments? Select one: A. 1,162.50 B. 1,120.02 C. 1,129.35 D. Correct answer not shown