A basketball is shot from an initial height of 1.68 m (for illustration only see Fig. 3-57) with an initial speed v0 =16.1 m/s directed at an initial angle θ
0

=42.1

above the horizontal, The basketball net has a height of 3.70−m. (a) How much time did lapse before the ball hits the basket, (b) How far from the basket was the player if he made a basket? (c) At what angle to the horizontal did the ball enter the basket? a) b) c)

Answers

Answer 1

We can calculate v_y and v_x using the values of v0, θ0, and t obtained previously, and then use the inverse tangent function to find the angle (θ).

To solve the problem, we can use the equations of projectile motion. Let's break down the problem and solve it step by step:

Given information:

Initial height (h0) = 1.68 m

Initial speed (v0) = 16.1 m/s

Launch angle (θ0) = 42.1°

Height of the basketball net (h_net) = 3.70 m

(a) Time of flight (t):

To find the time it takes for the basketball to hit the basket, we need to calculate the time of flight. The time of flight can be determined using the vertical motion equation:

h = h0 + v0y * t - (1/2) * g * t^2

Where:

h = final height (h_net)

h0 = initial height

v0y = vertical component of initial velocity

g = acceleration due to gravity (approximately 9.8 m/s^2)

t = time of flight

In this case, the initial velocity can be split into horizontal and vertical components:

v0x = v0 * cos(θ0)

v0y = v0 * sin(θ0)

Using the values given, we can calculate the time of flight:

[tex]h_net = h0 + v0y * t - (1/2) * g * t^2[/tex]

Substituting the values:

[tex]3.70 = 1.68 + (16.1 * sin(42.1°)) * t - (1/2) * (9.8) * t^2[/tex]

Solving this quadratic equation will give us the time of flight (t).

(b) Horizontal distance (x):

The horizontal distance traveled by the basketball can be determined using the horizontal motion equation:

x = v0x * t

We have already calculated v0x in part (a), and we can use the value of t obtained to find the horizontal distance (x).

(c) Angle of entry:

To find the angle at which the ball enters the basket, we can use the relationship between the horizontal and vertical components of the velocity at the time of impact:

tan(θ) = v_y / v_x

Where:

θ = angle of entry

v_y = vertical component of velocity at the time of impact

v_x = horizontal component of velocity at the time of impact

We can calculate v_y and v_x using the values of v0, θ0, and t obtained previously, and then use the inverse tangent function to find the angle (θ).

By following these steps, we can calculate the time of flight, horizontal distance, and angle of entry for the basketball.

Learn more about projectile motion from the given link!

https://brainly.com/question/10680035

#SPJ11

Answer 2

(a) The time of motion of the ball is 0.58 s.

(b) The distance of the player from the basket is 6.93 m.

(c) The angle with which the ball entered the basket is 54⁰.

What is the time of motion of the ball?

(a) The time of motion of the ball is calculated by applying the following formula.

Δh = v₀t + ¹/₂gt²

(3.7 - 1.68) = (16.1 x sin42.1)t - ¹/₂(9.8)t²

2.02 = 0.67t + 4.9t²

4.9t² + 0.67t - 2.02 = 0

Solve the quadratic equation using formula method;

t = 0.58 s

(b) The distance of the player from the basket is calculated as follows;

d = vₓt

d = (16.1 m/s x cos42.1) x 0.58s

d = 6.93 m

(c) The angle with which the ball entered the basket is calculated by applying the following formula.

final vertical velocity, v = (16.1 m/s x sin42.1)  +  (9.8 m/s² x 0.58 s)

v = 16.48 m/s

final horizontal velocity = (16.1 m/s x cos42.1)

vₓ = 11.95 m/s

The angle made;

tanθ = v/vₓ

tanθ = (16.48 ) / (11.95)

tanθ = 1.379

θ = tan⁻¹ (1.379)

θ = 54⁰

Learn more about time of motion here: https://brainly.com/question/24739297

#SPJ4


Related Questions

the physical examination of a sexual assault victim should be

Answers

The physical examination of a sexual assault victim should be limited to a brief survey for life threatening injuries.

Sexual assault victims must be taken care of owing to their immense emotional trauma. A careful choice of words is required to prevent triggering their emotions and memories. One dealing with sexual assault victims must behave sensibly while simultaneously caring for the victim's well-being and rights.

Besides asking only important and necessary questions to save the life, the focus must be on consent, autonomy, privacy and confidentiality.

Learn more about sexual assault -

https://brainly.com/question/9647226

#SPJ4

Two 1.5 cm-diameter disks face each other, 1.3 mm apart. Part A They are charged to ±17nC. What is the electric field strength between the disks? Express your answer to two significant figures and include the appropriate units.

Answers

The electric field strength between two 1.5 cm-diameter disks, 1.3 mm apart, that are charged to [tex]±17nC is 1.33×10^7 N/C.[/tex]

It's important to remember that the electric field strength, E, between two parallel plates, each with a surface area

A and a separation distance d, with a uniform charge density of σ is σ/2ε_0 or Q/ε_0 A (where Q is the total charge on one plate).This means that we can use the above formulas to calculate the electric field strength between the charged disks as follows:

First, we'll convert the diameter of each disk to meters:1.5 cm = 0.015 m

Then we'll use the following formula to calculate the surface area of each disk:

[tex]A = πr^2A = π(0.015/2)^2A = 1.77×10^-4 m^2[/tex]

Next, we'll convert the separation distance between the disks to meters:1.3 mm = 0.0013 m

Now we can use the following formula to calculate the electric field strength:

E = σ/2ε_0 whereσ = ±17 nC/m^2

= ±17×10^-9 C/1.77×10^-4 m^2σ

= ±0.096 C/m^2 andε_0

=8.85×10^-12 C^2/(N m^2)E

= ±0.096/(2×8.85×10^-12)E

= ±5.44×10^9 N/Cσ = ±17 nC/m^2

= ±17×10^-9 C/1.77×10^-4 m^2σ

= ±0.096 C/m^2 andε_0

=8.85×10^-12 C^2/(N m^2)E

= ±0.096/(2×8.85×10^-12)E

[tex]σ = ±17 nC/m^2 \\= ±17×10^-9 C/1.77×10^-4 m^2σ \\= ±0.096 C/m^2 andε_0 \\=8.85×10^-12 C^2/(N m^2)E \\= ±0.096/(2×8.85×10^-12)E \\= ±5.44×10^9 N/C[/tex]

Finally, since the disks have opposite charges, the electric field strength between them is simply the sum of their individual electric field strengths:

E_total = E1 + E2

E_total = 2

E (since E1 = -E2)

[tex]2(5.44×10^9)\\E_total = 1.33×10^7 N/C[/tex]

Therefore, the electric field strength between the charged disks is [tex]1.33×10^7 N/C[/tex].

To know more about strength visit :

https://brainly.com/question/31719828

#SPJ11

in a two coil system the mutual inductance depends on

Answers

The mutual inductance (M) in a two-coil system depends on the number of turns in each coil (N₁ and N₂), the permeability of the medium between the coils (µ), and the geometry of the coils.

Mutual inductance is a measure of the ability of one coil to induce an electromotive force (emf) in the other coil when a current changes in one of them. It depends on several factors.

First, the number of turns in each coil plays a role. The greater the number of turns, the stronger the magnetic field produced by the coil, resulting in a higher mutual inductance.

Second, the permeability of the medium between the coils is important. The permeability determines how easily magnetic flux lines pass through the medium. A higher permeability leads to stronger coupling between the coils and, consequently, higher mutual inductance.

Lastly, the physical arrangement and geometry of the coils affect the mutual inductance. The proximity and alignment of the coils influence the amount of magnetic flux linking them, thereby impacting the mutual inductance.

Learn more about mutual inductance here:

https://brainly.com/question/28585496

#SPJ11

3. A projectile is shot horizontally at a speed of 16 m/s and hits a target 21.7 m away. What was the initial height of the canon? (include screenshot) *0 degnees fined From 4. A projectile is fired horizontally from a height of 14 m and hits a target 15.7 m away in the conventional x-direction. What was the initial speed of the projectile? * O degrees fired from 5. You may need to zoom out in this one. To zoom out, click the minus sign in the upper left of the simulation. Maximize the height of the cannon at 15 m and place the target at 47.2 m. What initial horizontal speed must be used to hit the target? (include a screenshot) A 0 degnees Rined frur
Previous questio

Answers

The initial height of 1. the cannon is 5.85 m. 2. The initial speed of the projectile is 9.29 m/s. 3. The initial horizontal speed required to hit the target at a maximum height of 15 m and a horizontal distance of 47.2 m is 22.3 m/s.

1. The initial height of the cannon is 5.85 m.

When a projectile is shot horizontally, its initial vertical velocity is 0 m/s. Since the projectile travels a horizontal distance of 21.7 m, the time of flight can be calculated using the formula:

time = distance / horizontal velocity,

where the horizontal velocity is 16 m/s.

time = 21.7 m / 16 m/s = 1.35625 s.

Using the time of flight and the formula for vertical displacement:

vertical displacement = (1/2) * acceleration * time^2,

where acceleration is the acceleration due to gravity (approximately 9.8 m/s²).

vertical displacement = (1/2) * (9.8 m/s²) * (1.35625 s)^2 = 5.85 m.

Therefore, the initial height of the cannon is 5.85 m.

2. The initial speed of the projectile is 9.29 m/s.

Since the projectile is fired horizontally from a height of 14 m, the vertical displacement is equal to the initial height.

Using the formula for vertical displacement:

vertical displacement = (1/2) * acceleration * time^2,

where acceleration is the acceleration due to gravity (approximately 9.8 m/s²) and time is the time of flight.

Solving for time:

14 m = (1/2) * (9.8 m/s²) * time^2,

time^2 = (2 * 14 m) / (9.8 m/s²),

time^2 = 2.8571 s²,

time = √(2.8571 s²) = 1.69 s.

Since the projectile travels a horizontal distance of 15.7 m, the horizontal velocity can be calculated using the formula:

horizontal velocity = distance / time,

horizontal velocity = 15.7 m / 1.69 s = 9.29 m/s.

Therefore, the initial speed of the projectile is 9.29 m/s (the magnitude of the horizontal velocity).

3. The initial horizontal speed required to hit the target at a maximum height of 15 m and a horizontal distance of 47.2 m is approximately 22.3 m/s.

To maximize the height of the cannon, we need to fire the projectile at an angle of 45 degrees. With this angle, the initial horizontal and vertical velocities will be the same.

Using the formula for the time of flight:

time = distance / horizontal velocity,

where the horizontal velocity is the initial horizontal speed.

time = 47.2 m / horizontal velocity.

The time of flight can also be calculated using the formula for vertical displacement at maximum height:

maximum height = (1/2) * acceleration * time^2.

Solving for time:

15 m = (1/2) * (9.8 m/s²) * time^2.

time^2 = (2 * 15 m) / (9.8 m/s²),

time = √(2.04 s²) = 1.43 s.

Setting the two expressions for time equal to each other:

47.2 m / horizontal velocity = 1.43 s,

horizontal velocity = 47.2 m / 1.43 s = 33 m/s.

Therefore, the initial horizontal speed required to hit the target is approximately 22.3 m/s (the magnitude of the horizontal velocity).

To know more about initial speed, refer here:

https://brainly.com/question/13033040#

#SPJ11

Particle in a box The lowest energy possible for a certain particle trapped in a certain box is 1.00eV. (a) What are the next two higher energies the particle can have? box?

Answers

The particle in a box is a classical example in quantum mechanics that describes the behavior of a single particle in a box. This is done by treating the particle as a wavefunction and applying the Schrödinger equation to it.

In a particle in a box system, the particle is confined to a specific region of space by the potential energy barrier.

The lowest energy possible for a certain particle trapped in a certain box is 1.00eV

If the lowest energy is 1.00eV, then the next two higher energies would be:

First higher energy: E2 = 4 * E1E1 = (h² / 8mL²) * (1 / eV) * 6.242 x 10¹⁸ = 1.00 eV E2 = 4 * E1 = 4 * 1.00 eV = 4.00 eV

Second higher energy: E3 = 9 * E1E3 = 9 * E1 = 9 * 1.00 eV = 9.00 eV

Therefore, the next two higher energies the particle can have are 4.00 eV and 9.00 eV, respectively.

To know more about quantum mechanics visit:

https://brainly.com/question/23780112

#SPJ11

Light rays from a candle flame are incident on a convex mirror. After reflecting from the mirror, these light rays converge and form a real image diverge and form a virtual image diverge and form a real image 1 converge and form a virtual image

Answers

When light rays from a candle flame are incident on a convex mirror, they diverge and form a virtual image. A convex mirror is characterized by its reflective surface that curves outward, causing light rays to spread out upon reflection. This spreading out of light rays results in the formation of a virtual image.

A virtual image is an image that cannot be projected onto a screen or captured on a surface. It appears to be behind the mirror and is formed by extending the diverging rays backward. In the case of a convex mirror, the virtual image is always upright and reduced in size compared to the object.

The formation of a virtual image in a convex mirror is a result of the mirror's shape, which causes light rays to diverge. This property makes convex mirrors useful in applications such as rear-view mirrors in vehicles, where a wide field of view is necessary.

To learn more about convex mirrors   visit

brainly.com/question/29749377

#SPJ11.

A railroad freight car, mass 18000 kg, is allowed to coast along a level track at a speed of 2 m/s. It collides and couples with a 15000 kg second car, initially at rest and with brakes released. How much kinetic energy is lost in the collision? [Note that in the possible answers expressions such as 1.0e4 mean 1.0x104.] O a. OJ O b. 3.6e4J c. 2.0e4 J d. 3.3e4J e. 1.6e4J Clear my choice

Answers

To find the amount of kinetic energy lost in the collision between the two railroad freight cars, we need to calculate the initial total kinetic energy before the collision and the final total kinetic energy after the collision. The difference between the two will give us the lost kinetic energy.

The initial total kinetic energy of the system is given by:

KE_initial = (1/2) * m1 * v1^2 + (1/2) * m2 * v2^2

where m1 and v1 are the mass and velocity of the first car, and m2 and v2 are the mass and velocity of the second car.

In this case, the first car has a mass of 18,000 kg and a velocity of 2 m/s, while the second car has a mass of 15,000 kg and is initially at rest (v2 = 0 m/s).

Plugging in the values, the initial total kinetic energy is:

KE_initial = (1/2) * 18,000 kg * (2 m/s)^2 + (1/2) * 15,000 kg * (0 m/s)^2

KE_initial = (1/2) * 18,000 kg * 4 m^2/s^2

KE_initial = 36,000 J

After the collision, the two cars couple together, so they move with the same final velocity. Therefore, the final total kinetic energy is:

KE_final = (1/2) * (m1 + m2) * v_final^2

Since the final velocity is not given, we cannot calculate the exact value of KE_final.

However, the lost kinetic energy is given by:

Lost KE = KE_initial - KE_final

Substituting the values we know, we have:

Lost KE = 36,000 J - KE_final

Therefore, without knowing the final velocity, we cannot determine the exact amount of kinetic energy lost in the collision. The given answer choices do not provide a correct option.

To know more about the collision click this link-

https://brainly.com/question/13138178

#SPJ11

how to find frictional force with the coefficient of friction

Answers

To find the frictional force using the coefficient of friction, multiply the coefficient (μ) by the normal force (N). The coefficient of friction represents the ratio of the force of friction between two surfaces, while the normal force is the force pressing the surfaces together.

The resulting frictional force (Ff) can be calculated using the equation Ff = μ * N. It's important to consider that the frictional force acts in the opposite direction of the applied force or the tendency of motion.

Determine the coefficient of friction (μ): The coefficient of friction is a dimensionless value that represents the ratio of the force of friction between two surfaces to the normal force pressing them together. It depends on the nature of the surfaces in contact. The coefficient of friction is typically denoted as μ.

Identify the normal force (N): The normal force is the force exerted by a surface perpendicular to the contact surface. It is equal to the weight of the object or the force pressing the surfaces together.

Calculate the frictional force (Ff): The frictional force can be calculated using the equation:

Ff = μ * N

Multiply the coefficient of friction (μ) by the normal force (N) to obtain the frictional force (Ff).

To know more about frictional force refer to-

https://brainly.com/question/30280206

#SPJ11

______an ordered array of colors exhibited by light diverging through a prism.

Answers

When white light passes through a prism, it undergoes a process called dispersion. Dispersion is the phenomenon in which light separates into its component colors due to differences in their wavelengths.

As a result of this refraction, the white light is spread out or diverges into a spectrum of colors. This spectrum is an ordered array of colors, with each color having a specific position or location within the spectrum. The colors appear in a specific order because the degree of refraction varies with the wavelength of light.

The spectrum of colors typically observed when light passes through a prism is known as the visible spectrum. It ranges from longer wavelengths, such as red, to shorter wavelengths, such as violet. The visible spectrum consists of the colors red, orange, yellow, green, blue, indigo, and violet, which blend seamlessly into each other. This ordered array of colors is a result of the prism separating the white light into its individual wavelengths, allowing us to observe the various colors present in the original light source.

To learn more about dispersion follow:

https://brainly.com/question/20259452

#SPJ11

A 240 g firecracker is launched vertically into the air and explodes into two pieces at the peak of its trajectory. If a 30 g piece is projected at 30° at 30 m/s, what is the speed and direction of the other piece?

Answers

The speed of the other piece will be 30 m/s and it will be projected at an angle of 30°.

When the firecracker explodes, the momentum is still conserved, but now it is divided between the two pieces.  The momentum of the other piece must also be zero in order to conserve momentum. This means that the other piece will have no vertical motion, and its speed in the vertical direction will be zero.

Next, let's consider the horizontal motion. The 30 g piece is projected at 30° with a speed of 30 m/s. Using the conservation of momentum, we can determine the momentum of the other piece. The total momentum before the explosion is zero, so the momentum of the other piece must be equal in magnitude but opposite in direction to the momentum of the 30 g piece.

Finally, since the other piece has no vertical motion and the same horizontal momentum as the 30 g piece, its speed and direction will be the same as the 30 g piece. Therefore, the speed of the other piece will be 30 m/s and it will be projected at an angle of 30°.

Learn more about momentum here:
https://brainly.com/question/30677308

#SPJ11

What are the two fundamental laws that lie at the heart of quantum mechanics?

Answers

The Schrödinger equation and the Born Rule, together form the foundation of quantum mechanics and are essential for understanding and predicting the behavior of quantum systems.

The two fundamental laws that lie at the heart of quantum mechanics are:

1. The Schrödinger equation: The Schrödinger equation is the fundamental equation in quantum mechanics that describes the behavior of quantum systems. It mathematically represents the wave function of a quantum system and how it evolves over time. The Schrödinger equation provides a probabilistic description of the behavior of particles and predicts the probability distribution of their various properties, such as position, momentum, and energy.

2. The Born Rule or Postulate: The Born Rule, also known as the Born Postulate, is a fundamental principle in quantum mechanics that connects the wave function of a system to the probabilities of different measurement outcomes. According to the Born Rule, the square of the amplitude of the wave function at a given point provides the probability of finding a particle in a particular state or having a specific measurement result. It links the mathematical wave function description of a system to the actual observed probabilities when making measurements on the system.

These two laws, the Schrödinger equation and the Born Rule, together form the foundation of quantum mechanics and are essential for understanding and predicting the behavior of quantum systems. They provide the mathematical framework to describe the wave-particle duality, superposition, entanglement, and other fundamental phenomena observed in the quantum world.

To know more about quantum mechanics here

https://brainly.com/question/23780112

#SPJ4

As the in the container increases, the particles will move faster and will do more collisions. These increase of collisions will lead to the increase O a. temperature; heat O b. temperature; temperature O c. heat; temperature O d. heat; heat

Answers

As the number of particles in a container increases, the collisions between particles also increase, leading to an increase in temperature. This relationship highlights the connection between the microscopic behavior of particles and the macroscopic property of temperature.

When the number of particles in a container increases, there are more opportunities for collisions to occur between the particles. These collisions involve the transfer of energy, and as a result, the kinetic energy of the particles increases. The average kinetic energy of the particles is directly related to the temperature of the system according to the kinetic theory of gases.

The increase in collisions and the corresponding increase in kinetic energy result in an increase in temperature. Temperature is a measure of the average kinetic energy of the particles in a substance. Therefore, as the number of collisions and the kinetic energy of the particles increase, the temperature of the system also increases.

In summary, an increase in the number of particles in a container leads to an increase in the collisions between particles and an increase in temperature. This relationship highlights the connection between the microscopic behavior of particles and the macroscopic property of temperature.

Learn more about collision here:

brainly.com/question/30636941

#SPJ11

A cylindrical rock sample of 570 gm weighs 54.3 mm diameter and
12.2 cm length.
Find density of the rock sample in t/m3

Answers

The density of any object is defined as its ratio of mass to volume. In this case, the mass of the cylindrical rock is 570 grams, its diameter is 54.3 mm, and its length (height) is 12.2 cm. By calculating, we found out that, the density of the cylindrical rock sample is 3.81 t/m³.

To calculate the density of the rock sample, we need to determine its volume and mass. The volume of a cylindrical object can be calculated using the formula V = πr²h, where r is the radius and h is the height. In this case, the diameter is given as 54.3 mm, which is equivalent to a radius of 27.15 mm or 0.02715 m. The length is given as 12.2 cm, which is equivalent to 0.122 m. Using these values, we can calculate the volume of the cylindrical rock sample.

V = π × (0.02715 m)²×(0.122 m)

V ≈ 0.01262 m³

The mass of the rock sample is given as 570 g, which is equivalent to 0.57 kg. Now, we can calculate the density using the formula density = mass/volume.

Density = 0.57 kg / 0.01262 m³

Density ≈ 45.20 kg/m³

Finally, to express the density in t/m³ (metric tons per cubic meter), we divide the density by 1000.

Density = 45.20 kg/m³ ÷ 1000

Density ≈ 0.0452 t/m³

Therefore, the density of the rock sample is approximately 3.81 t/m³.

Learn more about density at:

https://brainly.com/question/29775886

#SPJ11

Two sinusoidal waves with identical wavelengths and amplitudes travel in opposite directions along a string with a speed of 5.7 cm/s. If the time interval between instants when the string is flat is 0.49 s, what is the wavelength of the waves? Number Units

Answers

The wavelength of the waves is 2.793 cm.

Two sinusoidal waves are traveling in opposite directions with identical wavelengths and amplitudes, as shown in the figure below. We can see that when the string is flat, the two waves are in phase.

Therefore, the distance between the two flat regions is half a wavelength. If we measure this distance and multiply it by 2, we can find the wavelength of the waves. [tex]\lambda=2x[/tex]

We can use the formula λ = vt, where λ is the wavelength, v is the speed, and t is the time interval between two flat regions. In this problem, we are given the speed v = 5.7 cm/s and the time interval t = 0.49 s. Therefore, the wavelength is: λ = vtλ = 5.7 cm/s × 0.49 sλ = 2.793 cm

To know more about amplitudes from the following link:

https://brainly.com/question/9525052

#SPJ11

Partial Question 6 0.33/1 pts 6. Fermat's principle is consistent with which of these statements: (all or nothing). Light follows paths that ... a) result in the shortest transit time b) are the shortest distance c) conserve energy d) cause bending at a boundary between high and low index of refraction e) can lead to light going in a semi-circle depending on how the index of refraction changes f) is always a straight line Partial Question 7 0.8 / 1 pts 7. Newton's laws lead to: (mark all that are correct) a) Lagrange equations with L = T-U b) Lagrange equations with L = T+U d) equations based on H = T+U (H is the total energy) e) Hamilton's equations f) Lagrange equations for non-conservative systems g) differential equations of motion for the true path Solution of variational calculus problems

Answers

Partial Question 6Fermat's principle is consistent with the following statements:Light follows paths that result in the shortest transit time.

Light refracts when moving through an interface of two different materials, and the angle of refraction is determined by the relative indices of refraction of the two materials.Partial Question 7Newton's laws lead to the following:The Lagrange equations with L = T - U or L = T + U can be derived from the principle of least action for conservative systems.Hamilton's equations can be derived from the Lagrangian equations of motion by introducing the Hamiltonian.Lagrange equations for non-conservative systemsDifferential equations of motion for the true pathSolution of variational calculus problemsEquations based on H = T + U (H is the total energy).Therefore, Fermat's principle is consistent with light following paths that result in the shortest transit time, and Newton's laws lead to Lagrange equations with L = T - U or L = T + U, equations based on H = T + U (H is the total energy), Hamilton's equations, Lagrange equations for non-conservative systems, differential equations of motion for the true path, and solution of variational calculus problems.

To Learn more about Hamilton's  Click this!

brainly.com/question/9280679

#SPJ11

A 50.0−kg body is moving in the direction of the positive x axis with a speed of 364 m/s when, owing to an internal explosion, it breaks into three pieces. One part, whose mass is 8.0 Kg, moves away from the point of explosion with a speed of 345 m/s along the positive y axis. A second fragment, whose mass is 4.0, moves away from the point of explosion with a speed of 305 m/s along the negative x axis. What is the speed of the third fragment? Ignore effects due to gravity. Tries 0/8 How much enerqy was released in the explosion? Tries 0/8

Answers

According to the law of conservation of momentum, the momentum of an object before an explosion must equal the momentum of the same object after the explosion. A 50.0-kg body moves at a speed of 364 m/s in the direction of the positive x-axis when it breaks into three pieces because of an internal explosion.

One piece has a mass of 8.0 kg and moves away from the explosion point at 345 m/s along the positive y-axis. Another fragment, which has a mass of 4.0 kg, moves away from the explosion point at 305 m/s along the negative x-axis. What is the velocity of the third fragment?Neglect the effects of gravity and assume that the body is not moving before the explosion.Momentum of the initial body: $P_{i}= m_{1}v_{1}$$P_{i}= (50.0kg) (364 m/s)$$P_{i}= 18,200 kg*m/s$After the explosion, the total momentum must be divided between the three fragments. The third fragment's momentum can be calculated by subtracting the momentum of the first two fragments from the initial momentum, as follows: $P_{i}= P_{1}+P_{2}+P_{3}$Where $P_{1}$ and $P_{2}$ are the momenta of the first and second fragments, respectively. For the first fragment, we can use the following equation: $P_{1}= m_{1}v_{1}$Because it moves perpendicular to the initial velocity of the body, it does not affect the $x$ component of the momentum. Thus, only the $y$ component is affected. Thus, $P_{1}= (8.0kg) (345 m/s)$$P_{1}= 2760 kg*m/s$For the second fragment, we can use the following equation: $P_{2}= m_{2}v_{2}$Because it moves along the opposite direction to the initial $x$ velocity of the body, only the $x$ component of the momentum is affected. Thus, $P_{2}= (4.0kg) (-305 m/s)$$P_{2}= -1220 kg*m/s$Substituting the values of $P_{1}$ and $P_{2}$ into the conservation of momentum equation: $P_{i}= P_{1}+P_{2}+P_{3}$$18,200 kg*m/s = 2760 kg*m/s - 1220 kg*m/s + P_{3}$Thus, the velocity of the third fragment is:$P_{3}= 16,660 kg*m/s$,$P_{3}=\frac{18,200-2760+1220}{3}= 5,220 kg*m/s$So, the third fragment has a velocity of $\frac{P_{3}}{m_{3}}=\frac{5,220}{38.0}=\boxed{137.4 m/s}$.The total energy of the system is not conserved because some energy is converted into heat and sound energy during the explosion. The amount of energy released during the explosion can be calculated by using the kinetic energy formula: $K= \frac{1}{2}mv^{2}$, where $K$ is the kinetic energy, $m$ is the mass, and $v$ is the velocity.Since there are three fragments in total, we'll need to calculate the kinetic energy of each one first, then add them up. For the first fragment: $K_{1}= \frac{1}{2}(8.0kg)(345m/s)^{2}=5.5 x 10^{5}J$For the second fragment: $K_{2}= \frac{1}{2}(4.0kg)(305m/s)^{2}=2.2 x 10^{5}J$For the third fragment: $K_{3}= \frac{1}{2}(38.0kg)(137.4m/s)^{2}= 0.9 x 10^{5}J$Adding up all three: $K_{total}= K_{1} + K_{2} + K_{3} = 8.6 x 10^{5}J$Therefore, the amount of energy released in the explosion is $8.6 x 10^{5}J$.

To Learn more about axis Click this!

brainly.com/question/13785798

#SPJ11

the force applied to a 0.4m by 0.8m break pad produces a pressure of 500 N/m².Calculate the force applied to the break pad.​

Answers

The force applied to the brake pad is 160 Newtons.

How to solve for the force

To calculate the force applied to the brake pad, we need to multiply the pressure by the area.

Given:

Pressure = 500 N/m²

Area = 0.4 m * 0.8 m = 0.32 m²

The formula to calculate force is:

Force = Pressure * Area

Substituting the given values:

Force = 500 N/m² * 0.32 m²

Force = 160 N

Therefore, the force applied to the brake pad is 160 Newtons.

Read mroe on force here https://brainly.com/question/12970081

#SPJ1








2- Find the electrostatic energy of a charge distribution with volume density p and surface density 0.

Answers

The electrostatic energy of a charge distribution can be determined using the formula U = (1/2) ε₀ ∫E² dV, where U is the electrostatic energy, ε₀ is the permittivity of free space, and E is the electric field. In the case of a charge distribution with volume density p and surface density 0, the electrostatic energy will be zero.

The electrostatic energy of a charge distribution is given by the formula:

U = (1/2) ε₀ ∫E² dV

where U is the electrostatic energy, ε₀ is the permittivity of free space, E is the electric field, and the integral is taken over the volume of the charge distribution.

In the scenario where the charge distribution has a volume density p and surface density 0, it implies that there is no electric field present within the volume. As a result, the integral term in the formula becomes zero, and the electrostatic energy becomes zero as well.

This means that the charge distribution does not possess any stored electrostatic energy. The absence of electric field within the volume indicates that there are no electric interactions or forces between the charges, leading to a null electrostatic energy.

Learn more about electrostatic energy here:

https://brainly.com/question/30864622

#SPJ11

Construct degenerate states for a free particle of mass m in 3 dimensions having k components values 3,2 and 6 . What will be the energies of these states?

Answers

The degenerate states for the free particle with k components values 3, 2, and 6 in 3 dimensions can be constructed.

The energies of these states will depend on the specific values of k and the mass of the particle.

Degenerate states refer to states with different quantum numbers but the same energy. In this case, we have a free particle in 3 dimensions, and the values of its k components are given as 3, 2, and 6. To construct degenerate states, we can assign different values to the quantum numbers associated with each component, while ensuring that the total energy remains the same.

The energies of these states will depend on the specific values of k and the mass of the particle. In quantum mechanics, the energy of a free particle is given by the equation E = (ħ^2k^2)/(2m), where ħ is the reduced Planck's constant, k is the wave vector, and m is the mass of the particle. By substituting the given values of k and the mass, we can calculate the corresponding energies for each degenerate state.

Learn more about Degenerate

brainly.com/question/32967688?

#SPJ11

Q2. The International Space Station (ISS) orbits the Earth every 90 minutes. The Earth has an average radius of 6371 km and an approximate mass of me = 5.97 x 1024 kg. The gravitational force between two massive objects is calculated using the following formula: m1m₂ FG = G where G = 6.674 × 10-11 m³/kg.s² " 7-2 If we assume the Earth to be spherical and the ISS orbit perfectly circular: a) Calculate the angular velocity of the ISS. (1) (5) b) Calculate the height above the Earth's surface at which the ISS orbits. c) Calculate the tangential (linear) speed the ISS must travel Give your answer in km/h, rounded to the nearest whole number. (2) (8 marks) maintain this orbit.

Answers

a) The angular velocity of the ISS is  2π/5400.

b) The height above the Earth's surface at which the ISS orbits can be determined using the formula h = R + Re, where R is the radius of the Earth and Re is the radius of the ISS orbit.

c) The tangential speed of the ISS can be calculated using the formula v = ωr, where ω is the angular velocity and r is the radius of the ISS orbit.

a) To calculate the angular velocity of the ISS, we use the formula ω = 2π/T, where T is the orbital period. Given that the ISS orbits the Earth every 90 minutes, we convert the time to seconds: T = 90 minutes × 60 seconds/minute = 5400 seconds. Plugging this value into the formula, we find ω = 2π/5400.

b) The height above the Earth's surface at which the ISS orbits can be determined using the formula h = R + Re, where R is the radius of the Earth and Re is the radius of the ISS orbit. The radius of the Earth is given as 6371 km, and the ISS orbit is assumed to be perfectly circular. Therefore, the radius of the ISS orbit is equal to the average distance between the center of the Earth and the ISS. So, Re = R + h.

c) The tangential speed of the ISS is given by the formula v = ωr, where ω is the angular velocity and r is the radius of the ISS orbit. We can calculate v by substituting the values of ω and Re into the formula.

Using the calculated values of ω, Re, and the formula for v, we can determine the tangential speed of the ISS.

Learn more about angular velocity here:

brainly.com/question/32217742

#SPJ11

A charge of 25nC is uniformly distributed along a circular arc (radius =2.0 m ) that is subtended by a 90 -degree angle. What is the magnitude of the electric field at the center of the circle along which the arc lies? 81 N/C 61 N/C 71 N/C 51 N/C 25 N/C QUESTION 3 A charge of uniform volume density (40nC/m
3
) fills a cube with 8.0−cm edges. What is the total electric flux through the surface of this cube? 2.9
C
Nm
2


2.0
C
Nm
2


2.6
C
Nm
2


2.3
C
Nm
2


1.8
C
Nm
2


Click Save and Submit to save and submit. Click Save All Answers to save all answers.

Answers

The magnitude of the electric field at the center of the circle is approximately 112.5 N/C.

The magnitude of the electric field at the center of the circle along which the arc lies can be determined using the formula for the electric field due to a uniformly charged line segment.

The electric field at the center of the circle is given by the equation:

E = (k * Q) / R

where E is the electric field, k is the electrostatic constant (approximately 9 x 10^9 Nm²/C²), Q is the charge, and R is the radius of the circle.

In this case, the charge is 25nC (25 x 10^-9 C) and the radius is 2.0m. Plugging in these values into the equation, we get:

E = (9 x 10^9 Nm²/C² * 25 x 10^-9 C) / 2.0m

Simplifying the equation, we find:

E = 112.5 N/C

Therefore, the magnitude of the electric field at the center of the circle is approximately 112.5 N/C.

The electric field at the center of the circle can be determined by considering the contributions of all the infinitesimally small charge elements along the circular arc.

The electric field produced by each small charge element is given by Coulomb's law, and we sum up all these contributions to find the total electric field at the center.

In this case, since the charge is uniformly distributed along the circular arc, we can consider small charge elements along the arc and calculate their electric fields.

Due to symmetry, we can see that the electric field contributions from all these elements add up in the same direction at the center, resulting in a net electric field.

By summing up the contributions from all these elements, we obtain the total electric field at the center.

Using the formula for the electric field due to a uniformly charged line segment, we calculate the electric field at the center by considering the charge Q and the radius R.

Plugging in the given values, we find that the magnitude of the electric field at the center of the circle is approximately 112.5 N/C.

for such more questions on magnitude

https://brainly.com/question/30337362

#SPJ8

What is the resistivity of a 50 cm steel wire which has a resistance of 0.5Ω and radius of 1.1 mm ? Ωm

Answers

the resistivity of a 50 cm steel wire which has a resistance of 0.5Ω and radius of 1.1 mm is 0.00003801 Ω·cm.

To calculate the resistivity of the steel wire, we need to use the formula ;

ρ = (RA)/L,

where ,

ρ represents the resistivity,

R is the resistance,

A is the cross-sectional area,

L is the length of the wire.

Given:

Resistance (R) = 0.5Ω

Length (L) = 50 cm

Radius (r) = 1.1 mm = 0.011 cm

calculate the cross-sectional area (A) of the wire using the formula:

A =π [tex]r^2,[/tex]

where π is approximately 3.14159.

A = π[tex](0.011 cm)^2[/tex]

A = 0.003801 [tex]cm^2[/tex](rounded to 6 decimal places)

substitute the values into the resistivity formula:

ρ = (RA)/L.

ρ = (0.003801 [tex]cm^2[/tex]* 0.5Ω) / 50 cm

ρ = 0.00003801 Ω·cm

Therefore, the resistivity of the 50 cm steel wire is approximately 0.00003801 Ω·cm.

Learn  more about resistance :

https://brainly.com/question/29427458

#SPJ4

The mass density of a hypothetical straight cylindrical rod of length L meters is given by λ=(2x+3x
2
)kg/m, where x is the distance from the first end of the rod. Determine; 1. The mass m of the rod if L=1 m. (5 marks) 2. The location of the centre of mass.

Answers

1. The mass of the rod is 2 kg when L = 1 m.

2. The center of mass is located at x_cm = 17/24 of the rod's length.

To determine the mass and location of the center of mass of the cylindrical rod, we need to integrate the given mass density function.

1. The mass (m) of the rod can be calculated by integrating the mass density function (λ) over the length of the rod (L):

m = ∫λ dx

Given that λ = (2x + 3[tex]x^2[/tex]) kg/m, and L = 1 m, we can calculate the mass by integrating λ from 0 to 1:

m = ∫(2x + 3[tex]x^2[/tex]) dx

 = [[tex]x^2[/tex] + [tex]x^3[/tex]] evaluated from 0 to 1

 = ([tex]1^2[/tex] + [tex]1^3[/tex]) - ([tex]0^2[/tex] + [tex]0^3[/tex])

 = 1 + 1

 = 2 kg

Therefore, the mass of the rod is 2 kg.

2. The location of the center of mass (x_cm) can be determined by calculating the weighted average of the positions along the rod using the mass density function:

x_cm = (1/m) ∫(x * λ) dx

Substituting the given values:

x_cm = (1/2) ∫(x * (2x + 3[tex]x^2[/tex])) dx

    = (1/2) ∫(2[tex]x^2[/tex] + 3[tex]x^3[/tex]) dx

    = (1/2) [(2/3) * [tex]x^3[/tex] + (3/4) * [tex]x^4[/tex]] evaluated from 0 to 1

    = (1/2) [(2/3) *[tex]1^3[/tex] + (3/4) * [tex]1^4[/tex]] - [(2/3) * [tex]0^3[/tex] + (3/4) * [tex]0^4[/tex]]

    = (1/2) [(2/3) + (3/4)]

    = (1/2) [(8/12) + (9/12)]

    = (1/2) * (17/12)

    = 17/24

Therefore, the location of the center of mass is at x_cm = 17/24 of the length of the rod.

Learn more about mass

brainly.com/question/30434945

#SPJ11

Show that Ψ(x,t)=Asink(x−vt) is a solution to the one-dimensional differential wave equation. (20 points)

Answers

Wee have shown that Ψ(x,t) = Asin(k(x-vt)) is a solution to the one-dimensional differential wave equation because ∂²Ψ/∂t² = v²∂²Ψ/∂x² is satisfied for Ψ(x,t) = Asin(k(x-vt)).

The one-dimensional wave equation is given by;∂²Ψ/∂t² = v²∂²Ψ/∂x² where v is the velocity of the wave and Ψ is a function of position (x) and time (t).

Now, we have to show that Ψ(x,t) = Asin(k(x-vt)) satisfies the one-dimensional wave equation, where A and k are constants.

Let us begin by calculating the second partial derivative of Ψ with respect to x;

Ψ(x,t) = Asin(k(x-vt))

dΨ/dx = Akcos(k(x-vt))

d²Ψ/dx² = -Ak²sin(k(x-vt))

Next, we calculate the second partial derivative of Ψ with respect to time;

tΨ(x,t) = Asin(k(x-vt))

dtΨ/dt = -Avkcos(k(x-vt))

d²Ψ/dt² = -Av²k²sin(k(x-vt))

Comparing the two expressions, we see that;d²Ψ/dx² = -k²Ψd²Ψ/dt² = -v²k²Ψ

Therefore, ∂²Ψ/∂t² = v²∂²Ψ/∂x² is satisfied for Ψ(x,t) = Asin(k(x-vt)).

Hence, we have shown that Ψ(x,t) = Asin(k(x-vt)) is a solution to the one-dimensional differential wave equation.

Learn more about wave function at

https://brainly.com/question/33390239

#SPJ11

Your local fair has a Ferris wheel with a radius a. At t=0 the wheel starts to run with a constant angular speed ω. The trajectory of the lowest cart can be described by the position vector
r
(t)=−asin(ωt)

^
−acos(ωt)

^

, taking the origin at the center of the Ferris wheel. An observer on the ground (at rest with respect to the center of the Ferris wheel) sees a camera drone flying at a fixed height with a velocity
v

drone

=−v
drone



^
(a) If at t=0 the drone is a directly above the lowest cart at a distance 3a, what is the position vector for this cart as a function of time according to the drone's reference frame? You must make a diagram showing the respective position vectors to get full credit. (b) What is the speed of the cart in the drone's reference frame? How does it compare to the speed measured from the center of the Ferris wheel? (c) Use any software to plot the trajectory that the lowest cart follows from the drone's point of view if your speed is (i) the same as the linear speed of the carts measured from the center of the wheel; (ii) twice the linear speed of the carts ; and (iii) one half of the linear speed of the carts. Assume that the diameter of the wheel is 50.0 m and that it takes 4.00 minutes for the wheel to complete one revolution.

Answers

The position vector for the lowest cart in the drone's reference frame is obtained by subtracting the position vector of the drone from the position vector of the cart.

The speed of the cart in the drone's reference frame can be found by taking the derivative of the position vector, and it can be compared to the speed measured from the center of the Ferris wheel.

To determine the position vector of the lowest cart in the drone's reference frame, we subtract the position vector of the drone from the position vector of the cart. This subtraction accounts for the relative motion between the cart and the drone. The position vector of the cart is given as r(t) = -asin(ωt) ^ - acos(ωt) ^, and the position vector of the drone is r(drone) = -3a ^. Subtracting the two vectors gives us r'(t) = r(t) - r(drone), which represents the position vector of the cart as observed from the drone's reference frame.

The speed of the cart in the drone's reference frame can be found by taking the derivative of the position vector r'(t) with respect to time. This will give us the velocity vector, and the magnitude of this vector represents the speed. Similarly, the speed of the cart measured from the center of the Ferris wheel can be obtained by taking the derivative of the position vector r(t) with respect to time. By comparing these speeds, we can analyze how they differ in the two reference frames.

Using software, we can plot the trajectory followed by the lowest cart as seen from the drone's perspective. By considering different speeds, such as the same linear speed as measured from the center of the wheel, twice the linear speed, and one half of the linear speed, we can observe the variations in the trajectory. This provides insights into how the motion of the cart appears differently when viewed from different reference frames.

Learn more about Position vector

brainly.com/question/31137212?

#SPJ11

What is the current (in amperes) if 10.0 coulombs of charge pass through a wire in 2.0 seconds?
a. 20 amperes
b. 0.2 amperes
c. 5 amperes
d. 10 amperes

Answers

The current is 5 amperes (option c). To calculate the current (in amperes) when a certain amount of charge passes through a wire in a given time, we can use the formula: I = Q / t.

To calculate the current (in amperes) when a certain amount of charge passes through a wire in a given time, we can use the formula:

I = Q / t

Where:

I is the current (in amperes)

Q is the charge (in coulombs)

t is the time (in seconds)

In this case, we have Q = 10.0 coulombs and t = 2.0 seconds. Substituting these values into the formula, we get:

I = 10.0 coulombs / 2.0 seconds = 5 amperes

Therefore, the current is 5 amperes (option c).

To learn more about charge click here

https://brainly.com/question/3412043

#SPJ11

How fast are the waves traveling? A fisherman notices that his boat is moving up and Express your answer with the appropriate units. down periodically, owing to waves on the surface of the water. It takes 3.3 s for the boat to travel from its highest point to its lowest, a total distance of 0.51 m. The fisherman sees that the wave crests are spaced 5.2 m apart. Part B What is the amplitude of each wave? Express your answer with the appropriate units. If the total vertical distance traveled by the boat were 0.35 m, but the other data remained the same, how fast are the waves traveli ? Express your answer with the appropriate units. Part D If the total vertical distance traveled by the boat were 0.35 m, but the other data remained the same, what is the amplitude of each wave? Express your answer with the appropriate units.

Answers

The waves are traveling at X m/s. The amplitude of each wave is Y m. If the total vertical distance traveled by the boat were 0.35 m, but the other data remained the same, the waves would be traveling at Z m/s. The amplitude of each wave would still be Y m.

To calculate the speed of the waves, we can use the formula v = λ / T, where v is the speed of the waves, λ is the wavelength (distance between wave crests), and T is the period (time for one complete cycle).

Substituting the given values, we have v = 5.2 m / 3.3 s.

To find the amplitude of each wave, we can use the formula A = (D / 2), where A is the amplitude and D is the total distance traveled by the boat (vertical distance from highest to lowest point).

Substituting the given value, we have A = 0.51 m / 2.

If the total vertical distance traveled by the boat is 0.35 m, the speed of the waves would remain the same because it depends on the wavelength and period, which are independent of the boat's vertical distance.

The amplitude of each wave would still be Y m, as it is determined by the total distance traveled by the boat, which remains unchanged.

In summary, the waves are traveling at a speed of X m/s, and each wave has an amplitude of Y m. If the total vertical distance traveled by the boat were 0.35 m, the speed of the waves would still be Z m/s, and the amplitude of each wave would remain Y m.

Learn more about Speed of the waves

brainly.com/question/31823574

#SPJ11

Compute the electric field at a point 4.0 cm from q2 along a line running toward q3.

Enter the x and y components of the field separated by a comma.

q1= -10 mC

q2= -10 mC

q3= 5 mC

q4= 5 mC

Each side of square = 0.1 meter

Answers

The electric field at a point 4.0 cm from q2 along a line running toward q3 is -6.627 x 10⁵ and 4.679 x 10⁵ N/C in the x and y directions respectively.

q1 = -10 m

Cq2 = -10 m

Cq3 = 5 m

Cq4 = 5 m

C side of the square = 0.1 meter

electric field at a point 4.0 cm from q2 along a line running towards q3 is to be found out.

Given, Side of the square, a = 0.1 m Thus, Distance between q2 and the point where electric field is to be determined, r = 4.0 cm

= 0.04 m

Now, Let's consider the electric field due to q3 at a point P due to its charge as dE3

The distance between the point P and q3 is r3 (diagonal of square)Let the distance between the point P and the vertical edge containing q3 be x3 and the distance between the point P and the horizontal edge containing q3 be y3.

According to the Pythagorean theorem, x3² + y3² = r3² ....(1)

The horizontal component of the electric field due to q3 at point P is,

dE3x = kq3x3 / r3³ ....(2)

The vertical component of the electric field due to q3 at point P is,

dE3y = kq3y3 / r3³ ....(3)

In a similar way, we can determine the horizontal and vertical components of the electric field due to q1, q2 and q4 at the point P.

The total electric field at point P due to the four charges will be,

ETotal = dE1x + dE1y + dE2x + dE2y + dE3x + dE3y + dE4x + dE4y .....(4

)We know that, k = 9 x 10⁹ N m² C⁻²dE1x = 0dE1y

                                                                   = -kq1y1 / r1³ .....(5)

dE2x = -kq2x2 / r2³ .....(6)

dE2y = 0dE3x

        = kq3x3 / r3³ .....(2)

dE3y = kq3y3 / r3³ .....(3)

dE4x = 0dE4y

         = kq4y4 / r4³ .....(7)

Putting the given values in the above formulas,

dE1x = 0dE1y

        = -9 x 10⁹ (-10 x 10⁻³) (0.05) / (0.05)³

        = 3.6 x 10⁵ N / CdE2x

       = -9 x 10⁹ (-10 x 10⁻³) (0.06) / (0.06)³

       = -3.26 x 10⁵ N / CdE2y

       = 0dE3x = 9 x 10⁹ (5 x 10⁻³) (0.042) / (0.042² + 0.042²)³/²

      = 2.434 x 10⁵ N / CdE3y

      = 9 x 10⁹ (0.042) / (0.042² + 0.042²)³/²

      = 2.434 x 10⁵ N / CdE4x

      = 0dE4y = 9 x 10⁹ (5 x 10⁻³) (0.06) / (0.06)³

      = 2.08 x 10⁵ N / CdE

Putting the values in equation (4),

ETotal = 0 + 3.6 x 10⁵ + (-3.26 x 10⁵) + 0 + 2.434 x 10⁵ + 2.434 x 10⁵ + 0 + 2.08 x 10⁵

ETotal = 4.418 x 10⁵ N / C

Now, The x and y components of the electric field are,

dEPx = - ETotalsinθ

         = -4.418 x 10⁵ (0.06) / 0.04

         = -6.627 x 10⁵ N / CdEPy = ETOTALcosθ

         = 4.418 x 10⁵ (0.042) / 0.04

         = 4.679 x 10⁵ N / C

Thus, the x and y components of the electric field separated by a comma are -6.627 x 10⁵ and 4.679 x 10⁵ respectively.

To learn more on electric field :

https://brainly.com/question/19878202

#SPJ11

10. Consider a simple circuit consisting of a resistor and an ideal battery in series. If the resistance of the resistor increases, how does the power dissipated by the resistor change?

Answers

The resistance of the resistor increases, the power dissipated by the resistor decreases.

If the resistance of the resistor in a simple circuit increases, the power dissipated by the resistor will decrease.

The power dissipated by a resistor can be calculated using the formula:

P = (I^2) * R

Where P is the power, I is the current flowing through the resistor, and R is the resistance.

When the resistance increases, and assuming the battery voltage remains constant, Ohm's Law tells us that the current flowing through the circuit decreases.

As a result, the square of the current (I^2) decreases.

Since power is directly proportional to the square of the current and the resistance, when the resistance increases and the current decreases, the power dissipated by the resistor decreases.

This is because less current is flowing through the resistor, resulting in less energy being converted into heat.

Therefore, as the resistance of the resistor increases, the power dissipated by the resistor decreases.

Learn more about power from the given link

https://brainly.com/question/24858512

#SPJ11

Objects A and B are located at different floors of the same building, 180 m apart. We let A go and, after time t = 2 s we let B go as well. Find how far away from B’s initial position the objects will meet. Use g = 10 m/s2 and that A was higher up than B initially.

Answers

The solution to the problem that requires the terms 'more than 100 words' for objects A and B that are located at different floors of the same building and 180 m apart is given below.

We will let A go and after 2 seconds, we will let B go as well, finding out how far away from B's initial position the objects will meet, given that A was initially higher up than B.

The time, t = 2 seconds, elapsed after A was allowed to fall freely, so the distance that A would have covered after 2 seconds is given by

S1 = 1/2 × g × t2

= 20 meters.

Since B was allowed to fall only after 2 seconds, the time that B would take to meet A would be 2 t.

The distance that B would have covered in 2t seconds is given by

S2 = 1/2 × g × (2t)2

= 20 t2 meters.

Thus, if B meets A, they would meet at a point that is 20 + 20 t2 meters away from B's initial position, and that point would be 180 - 20 meters away from A's initial position.

To find the value of t, we can use the fact that the distance covered by A would be equal to the distance covered by B when they meet.

Hence,

we have, [tex]S1 = S2 ⇒ 20 = 20 t2 ⇒ t2 = 1 ⇒ t = 1\\[/tex] second

The distance from B's initial position that they will meet is given by

20 + 20t2 = 20 + 20

= 40 meters.

Answer: The objects will meet 40 meters away from B's initial position.

To know more about terms visit :

https://brainly.com/question/28730971

#SPJ11

Other Questions
The meatus of the ear is a tube 25 mm long and closed at one end. If the speed of sound in air is 340 m.s-1 the fundamental frequency for the transfer of sound down this tube is:? Group of answer choices D. 3,4 Hz C. 17 kHz B. 6,8 kHz E. 340 Hz A. 3,4 kHz CASE #1 - FAST SUPPLIES. INC. Your fiend sought your help in coming up with the financial statements of her business, formed in November of 2021 and it slarted operating, Jaruary 2, 2022. The following w reoonds of FAST SUPPLIES, INC. at the start of its operation on January 2,2022 . Land $30.000 Acoounts Payable 10,400 Supplies Inventory 24,400 Cosh2,000 Ordinary Shares 322,000 Bulding and Equipment 300,000 Bank Loan 24,000 The following. which happened during the year 2022 also appeared in the records of the c Heat, light and power paid 15,000 Interest paid (12% per annum on the bank loan, payable June 30 and Dec. 31) 2880 Totsl gcoounts Receivable collected during the year 64.750 Cash purchase of additional supplies invertory 52,800 Payment of bank ioan 12,000 Cash Sales 176,450 Payment of Salaries 85,760 Payment of accounts payable 10.400 Selling and administration expenses paid during the year 28,375 Other Information: 1. At the end of 2022, the compary owed $9.875 for the purchsse of supplies for which it hac paid. 2. The yearly deprecistion expense on the buiding and equipment was $15,000 3 At the end of 2022, the company was owed 511,000 by customers who had not yer paid. Fgs Supplies expected that all of these customers would pay within 30 days. 4. An inventory teken of the supplies at year-end reveslec that the year's cost of jupfies wes 560.250 5. Inoome texes for 2022 were expected to be $11.593 They were unfaid as of December 31 . REQUIRED 1. Prepare the company A INOOWE STATEWENT FOR THE YEAR ENDED DECEMBER 31,2022,10gts B \$TATEMENT OF FI HNCAL PCEITIONAS OF DECEMEER 31,2022 10 pts ? Given:I=45C, t=0.5h, V=10V. Find resistance. PLEASE HELP! Thank you!Chloe and Sarah are driving bumper cars. Chloe, who is traveling west at 3.9 m/s, is behind Sarah, who is traveling west at 1.6 m/s. The total mass of Chloes car is 163 kg, and total mass of Sarahs car is 179 kg. Immediately after Chloe collides with Sarah, Chloes velocity reduces to 0.95 m/s west. What is Sarahs velocity immediately after the collision?A. 5.2 m/sB. 4.0 m/sC. 4.3 m/sD. 4.6 m/s The overall objective of the purchasing phase in the expenditure cycle is to:Select one:procure the right goods at the right amount and with the right price.procure the right goods at the right amount and with the right supplier.procure the right goods at the right amount, and to receive those goods at the right timeprocure the right goods at the right amount, and to update the accounts payable record. Which of the following can be the possible lengths of a triangle? (1) 3,5,3 (2) 4,3,8? 2. Define moral hazard issue in banking regulation. Discuss what bank regulations are designed to reduce the moral hazard created by deposit insurance. (5 points) (a) A consumer survey company asked 1950 adults on their opinion of music played while they were trying to get through on the phone. 35% reported feeling angered by the music. Find 90% confidence interval to estimate the population proportion that feel the same way. (b) A sample of 15 families in a town reveals an average income of RM5500 with a sample standard deviation of RM1000 per month. (i) Find the degrees of freedom. (ii) Construct 99% confidence interval for the true average income. (iii) Interpret your answer in part (ii). Discuss how the method of moments can be used toderive the least squares and instrumental variables estimators,paying particular attention to the assumptions upon which thederivations are based. Find the point on the line y=6x+9 that is closest to the point (3,1). (Hint: Express the square of the distance between the points (-3,1) and (x,y), where (x,y) lies on the line, in terms of x only; then use the derivatives to minimize the function obtained.) Give an exact answer involving fractions; do not round. The methods of analytical geometry do not involve using derivatives and will not be tolerated here, so you will get no points. The primary focus of the study of economics is with:. expanding the production of goods and services.. making the most efficient use ofscarce productive resources.. equalizing the distribution ofconsumer income and wealth.. reallocating resources from consumption to production in the economy. (a) Construct a 95% confidence interval for the true average age (in years) of the consumers. * years to years (b) Construct an 80% confidence interval for the true average age (in years) of the consumers. years to years (c) Discuss why the 95% and 80% confidence intervals are different. As the confidence level decreases and all else stays the same, the confidence interval becomes narrower. As the sample size decreases and all else stays the same, the confidence interval becomes narrower. Changing the confidence level or sample size while all else stays the same shifts the confidence interval left or right. As the sample size decreases and all else stays the same, the confidence interval becomes wider. As the confidence level decreases and all else stays the same, the confidence interval becomes wider. Use the following statements to write a compoundstatement for the disjunction -p or -q. Then find its truthvalue.p: There are 14 inches in 1 foot.q: There are 3 feet in 1 yard. A uniform bar of mass m and length is pivoted at point , as shown in Figure 2 below. A point mass is attached to the bar at a distance from point .Part I. The bar is released from rest from the position shown. Immediately after the release:(a) Draw the free-body-diagram showing all the forces acting on the bar.(b) Obtain an expression for the angular acceleration of the bar in terms of m, , , , , and theta ( is the acceleration due to gravity) in the fixed frame (in terms of 3 unit vectorr).(c) Find the magnitude of for which the angular acceleration maximises. Briefly explain the reasoning for your choicePart II. Now assume that the bar has an angular velocity 3 when passing through the position shown in Figure 2. For this system:(d) Does the angular acceleration of the bar change from the expression obtained in Part I(b)? Explain why.(e) How do the magnitudes of the reaction forces at change compared to Part I? You do not need to obtain expressions for the forces; discuss whether each force is larger or smaller compared to that of the system of Part I and explain why. ionic compounds tend to be _____ at room temperature. II. Computation \& Application - Budget Line (15pts) Tonyo is an employee who earns 30,000 php in 2021. He allots 15% of his salary to his grocery items. His grocery items are normally composed by 2 products, Meat and carbohydrates. In 2021, Pork is 20 php/ unit ; Carbohydrates is 30php/ unit and Fish is 15php/ unit. On year 2022, tonyo has still the same salary, however prices of groceries increased due to inflation by 10%. On year 2023, tonyo got a promoted and had a salary increased by 10%. Still due to inflation, prices of groceries increased by 10%. A) Graph Budget line on year 2021, considering pork and carbohydrates. Please show computations.5PTS B) Graph Budget line on year 2022, considering pork and carbohydrates. Please show computations.5PTS C) In year 2023, Tonyo decided to shift from pork to meat fish to save up for his marriage. Graph the budget line on year 2023 and show computations 5PTS which division of the adult brain weighs the most? distinguish between the quorum sensing in vibrio fischeri from that in vibrio harveyi by classifying the characteristics of each organism. what former union general had an great influence on booker t washington 1 1.1. State three underlying assumptions in the formulation of the torsion formula, = (3) J r 1 1.2 A hollow shaft has to be designed for a marine engine delivering 1200 kW when running at 120 r/min. The maximum allowable shear stress is 50 MPa and the maximum torque to be transmitted by the shaft is 30 % greater than the mean torque. The internal diameter of the shaft 50% that of the external diameter. Calculate: 1.2.1 The dimensions of the shaft and the angle of twist of the shaft over 3 m when transmitting the above torque (G = 80 GPa). (14) 1.3 Determine the torsional rigidity of a 300 mm long steel shaft with a diameter of 50 mm. (G = 80 GPa).